
Astronomical Data Analysis Software and Systems VI
ASP Conference Series, Vol. 125, 1997
Gareth Hunt and H. E. Payne, e

 Copyright 1997 Astronomical Society of the Pacific. All rights reserved.

ds.

QDB: An IDL-Based Interface to LASCO Databases

A. E. Esfandiari, S. E. Paswaters, D. Wang

Interferometrics, Inc.

R. A. Howard

Naval Research Laboratory

Abstract. QDB is a collection of IDL and C routines that provides a
query interface to the Large Angle Spectrometric Coronograph (LASCO)
databases maintained under the Sybase database management system.
IDL widgets are used extensively to display the databases, tables, columns,
and on-line help. This is a fully automated process—no code modifi-
cation is required to reflect database changes such as adding/dropping
databases, tables, or columns. Standard Query Language (SQL) is used
to build a query based on the user selection. This query is then passed via
Remote SHell (rsh) to two C routines that access the Sybase Open Client
Database library to execute the query. The result is returned in an IDL
structure. Another set of IDL routines optionally displays or manipulates
the data in this structure.

1. Introduction

LASCO is one of the first LASCO instrument databases to be defined and pop-
ulated with data. It is relatively change-free now but, while in the test mode, it
went through many structural changes. These changes illustrated a need for a
general and flexible interface that could be used with any database, regardless
of its structure, size, and type of data. We needed a robust interface that did
not require editing if, for example, a new table was added, or a column name
was changed. This led to the creation of QDB, which interacts with a database
without any advance knowledge about its structure or even its existence. QDB
is a user friendly software package with much on-line help. It is currently used
remotely to build and execute a LASCO SQL query, and then capture the re-
turned data. This paper is devoted to explaining the inner workings of QDB as
it performs this task.

2. QDB Details

2.1. Building a Query

QDB may be called with or without arguments. If the user knows SQL and has a
query ready, he can simply pass the database name and the query as arguments
to QDB, bypassing all the widgets. Otherwise, if no argument is provided, the
following events take place. Upon invocation, QDB sends a query to the RDBMS

353

354 Esfandiari et al.

Figure 1. Flow diagram of QDB.

requesting all the existing database names, if any. If successful, it uses the IDL
widgets to display them as toggle buttons. The user then clicks on database
name(s) to select one or more databases. QDB then sends another query to
the RDBMS requesting the table names within the selected database(s). If
successful, it uses the IDL widgets again to display the table names using toggle
buttons. The user now selects the tables he needs from the displayed list. QDB
sends yet another query to the RDBMS, requesting the column names within
each selected table, and displaying them using a combination of buttons that
allow selection of any column (field) and providing areas for entering optional
query conditions. When satisfied with the selections, the user exits the menu.
QDB keeps track of all of the user selections, uses them to build a SQL query,
and submits it to the RDBMS. At each step of this process, user can seek help
using the help buttons, or simply exit the program. Figure 1 shows the flow
diagram for QDB.

Because of QDB’s dynamic interaction with the RDBMS, it always sees
the latest database. Therefore, if a new column is added to a table while QDB
is running and is displaying the table names, that new column appears in the

QDB: An IDL-Based Interface to LASCO Databases 355

columns list when QDB reaches that point. This flexibility makes QDB a low
maintenance utility. In fact, only a one-time small code change is required to
set conditions for joins between newly added tables, if such joins are desired.

2.2. Interface with RDBMS

QDB itself resides on the client machine but it calls two C routines that access
the Sybase Open Client Database library to execute the query and they, along
with the RDBMS, reside on the server machine. The query is passed to these
routines using UNIX’s Remote SHell (rsh) service. Besides adding the flexibility
of using QDB remotely, rsh provides access security since the host machine must
know the client login information (user and machine name from which QDB is
started) beforehand.

2.3. The Output

The result of the query, along with each column’s name, length, and data type, is
captured in a text file on the client. QDB parses this file and builds a structure
with field names and types corresponding to the selected column names and
data types, and populates it with the data. This IDL structure is then returned
to the user. Another set of IDL routines is provided to display or manipulate
the data in this structure.

2.4. About The Code

This interface consists of about 1200 lines of IDL code and another 550 lines
of C code. It is currently setup for use with UNIX and Sybase systems but it
can be modified for use with other operating systems and/or relational database
management systems. To use another operating system, rsh must be replaced
with other means of communication with the remote C routines. To use another
RDBMS, the C routines must be modified to make calls to the library routines
specific to that RDBMS.

3. QDB and LASCO Database

LASCO is one of the LASCO instrument databases whose basic structure has
been relatively change-free but has been regularly updated with new data. Com-
posed of JPEG browse images and tabular data about these images, it is growing
rapidly. Currently, it uses 450 MB of disk space to archive over 80,000 com-
pressed browse images and related information. The database is organized into
tables containing compressed images, image names, image header information,
image types, image processing steps, image parent information, image history,
etc. QDB is currently used to query this database. Figure 2 is a sample display
where two tables, img-browse and img-leb-hdr, have been selected and displayed,
and user selection is in progress. In this figure, filename, browse-img, data-obs,
camera, filter, and polar fields are toggled on for selection and a time range using
the data-obs field is entered.

QDB is capable of joining various tables within the LASCO database to
produce the desired output, but, more importantly, it is also capable of join-
ing tables from different databases. This is an important feature because we
will soon have other databases in production, such as housekeeping, observing,

356 Esfandiari et al.

Figure 2. A sample display. Two LASCO tables selected for user
interaction.

calibration, user access, and processing tables which may require joins. As men-
tioned earlier, the dynamic nature of QDB allows for the addition and linkage
of these databases with only a minimal amount of additional effort.

4. Conclusion

Because of its dynamic nature and flexibility, QDB can be used remotely to
access any database. A user with prior permission, for instance, may run the
QDB from his machine over the network, access the LASCO database on our
host, and capture the result on his client. Moreover, QDB users need not know
SQL in order to use it. All that is needed is the knowledge of which database and
tables contain the desired data. In most cases, the database and table names,
themselves, convey this information. Furthermore, since result of a QDB query
is captured in an IDL structure, it is available and ideal for programmatic use
such as displaying, graphing, and data reduction. These features of QDB have
allowed us to query the LASCO database frequently and efficiently. We also use
QDB to test other databases that are currently under development. In these
cases, the only overhead is a one-time minimal code change to handle new joins.

