
Astronomical Data Analysis Software and Systems XII
ASP Conference Series, Vol. 295, 2003
H. E. Payne, R. I. Jedrzejewski, and R. N. Hook, eds.

CARMA Software Development

Marc W. Pound1, N. S. Amarnath1, Kevin P. Rauch1, Peter J. Teuben1 ,
Stephen L. Scott2, Rick Hobbs2, Andrew D. Beard2, Paul Daniel2,
David M. Mehringer3, Raymond Plante3, J. Colby Kraybill4, Melvyn
Wright4, Erik Leitch5

Abstract. CARMA (Combined Array for Research in Millimeter-Wave
Astronomy) will combine the existing BIMA and OVRO mm interferom-
eters into a single array at a new high altitude site (∼ 8000 ft). A third
array, the Sunyaev-Zeldovich Array (SZA), will be built in the next two
years and co-located with the CARMA interferometer. The SZA antennas
will be available at times for cross-correlation with the CARMA anten-
nas. This combination of heterogeneous antennas and their subsystems
bring up new challenges not only in hardware, but also in software and
in remote collaborations.

The two existing arrays have their own mature operations software,
developed over the last decade, and the SZA software will be partially
based on the DASI system currently at the South Pole. For CARMA,
the situation is not as simple as choosing one over the other. It is fur-
ther complicated by the fact that the software developers are dispersed
among five institutions and three time zones. Such multi-institution de-
velopment requires frequent communication, local oversight, and reliable
code management tools.

Timeline has forced us to carefully balance reusing existing software,
with perhaps wrappers to a new more object oriented approach, and
rewriting from scratch. New hardware, such as the correlator, has already
resulted in new software, but we anticipate re-using a fair fraction of the
existing telescope software.

This paper summarizes our ideas on how we plan to do this, as well
as outline what we call the CARMA Software Toolkit and associated
Software Engineering aspects.

1University of Maryland

2California Institute of Technology/Owens Valley Radio Observatory

3NCSA/University of Illinois

4University of California, Berkeley

5University of Chicago

377

c© Copyright 2003 Astronomical Society of the Pacific. All rights reserved.



378 Pound et al.

1. Introduction

Two preceding papers by Scott et al. (2003) and Plante et al. (2003) describe
the COBRA/CARMA correlator and the need for a new CARMA native data
format. The software required to control the CARMA array will be gradually
phased in to co-exist with the current array control systems, which will be used
as testbeds for the CARMA software.

BIMA uses one central computer, running Solaris (Hoffman et al. 1996;
Welch et al. 1996; Yu 2001) controlling all antennas, and is currently starting to
use Antenna Computers (AC) running Linux. Antenna Computers are housed in
the antennas themselves and are intended to take over some of the functionality
of the central computer (e.g., drive system control). OVRO has already been
using AC’s (microVax), with a VaxStation running VMS as the central control
computer. Although the SZA is a newly built array, some of the existing software
from the DASI system will be reused.

CARMA will be run by a central Array Control Computer (ACC), running
Linux, and each antenna will have a diskless AC running real-time Linux. The
ACs will be booted from flash ROM and use NFS to access system disks. All
off-line software will be running Linux and Solaris, but MacOS X and Windows
will most likely be used for monitoring purposes.

2. Software Reuse: Carma Software Toolkit

We identified four types of software components we will use for CARMA:
• In-house — the software we design ourselves, using CVS for version con-
trol, and for which we will have our own build system. We still expect some
of the software in this category to be reusable from the original arrays.

• Friendly— written by colleagues or collaborating groups, and over which
we have some control in terms of code development. Their build system
is however not integrated into ours and we limit ourselves to using stable
releases. Examples: MIRIAD, AIPS++.

• Alien — imported directly from other Open Source projects, but over
which we have no direct control and whose build system will have to be
understood by ours. Examples: pgplot, cfitsio, USNO ephemeris.

• Commercial — either in source code form, or binary only. Unlike the
previous three, the distribution of this type will have to be controlled and
cannot be open. Examples: ORBacus, IDL.

Together these components will make up the Carma Software Toolkit (CST).

3. Basic Tools

Source code management will be done using CVS. We will use CVS dead-end
branches to create releases that will be used by observers to control the array.
Feature enhancements, as well as coding experiments, are also encouraged to
occur via branching, though meant to be merged back to the mainline develop-
ment. Lastly, CVS has also proven to be a very useful backup tool.

C++ will be our main language for development, using the GNU compiler,
though compilation using at least one other compiler and one other architecture



CARMA Software Development 379

is done to improve portability. The build system is configured using autoconf (a
GNU toolkit), and a set of hierarchical makefiles. Documentation is extracted
automatically from the source code via the doxygen tool.

4. Hardware Interfaces

On the hardware side, CARMA Interface Control Documents (ICDs) are in-
tended to be the definitive documents governing the mechanical and electrical
interfaces between various subsystems. Although some of the information will
inevitably be included in documentation for the subsystems themselves, the
ICDs are the governing document in the case of any discrepancies. The ICDs
are stored in a linked system diagram, making it easy to traverse the CARMA
system and see the interrelation of components, all the while having detailed
documentation immediately available.

For software ICDs, we have followed a similar approach. Where a software
system is strongly tied to hardware, we will create direct links from the hardware
system diagram to the doxygen-generated high-level software API. For pure
software ICDs, we will use a parallel package tree, also generated by doxygen.
Documentation updates will be part of the nightly build.

Some subsystems have large autonomous software components: e.g., gpib,
canbus, and cobra.

5. Software Engineering

We use a classical approach of writing requirements, design and implementation.
Our work will be very distributed, across five locations and three timezones,
aided by CVS for source code control. Nightly builds will keep track of the
stability of the system. Due to the distributed development environment, off-site
a number of hardware components need to be emulated. This will also simplify
writing observing checkers. All workers meet during weekly tele-conferences and
regular (twice a year) face-to-face meetings.

6. Work Packages

After analysis and prioritization of CARMA’s high-level computing require-
ments, we have divided the work into 42 Work Packages, about half of which
have a strong tie to hardware. Examples of work packages are Master Clock, At-
mospheric Delay Correction, Monitoring, and Atomic Commands. Each package
has been assigned to one or more institutions and a lead developer identified.
The lead developer is principally responsible for design, implementation, and
testing of the work package, as well as biweekly status reports to the CARMA
Project Manager. In addition, each institution has a Work Package Manager
(who is also one of the developers), whose job it is to keep an eye on local
milestones and identify any scheduling problems that may arise.



380 Pound et al.

References

Hoffman, W., Hudson, J., Sharpe, R. K., Grossman, A. W., Morgan, J. A.,
& Teuben, P. J. 1996, in ASP Conf. Ser., Vol. 101, Astronomical Data
Analysis Software and Systems V, ed. G. H. Jacoby & J. Barnes (San
Francisco: ASP), 436.

Plante, R., Pound, M. W., Mehringer, D., Scott, S. L., Beard, A., Daniel, P.,
Hobbs, R., Kraybill, J. C., Wright, M., Leitch, E., Amarnath, N. S.,
Rauch, K. P., & Teuben, P. J. 2003, this volume, 269

Scott, S. L., Hobbs, R., Beard, A., Daniel, P., Mehringer, D., Plante, R., Kray-
bill, J. C., Wright, M., Leitch, E., Amarnath, N. S., Pound, M. W.,
Rauch, K. P., & Teuben, P. J. 2003, this volume, 265

Welch, W. J. et al. 1996, PASP, 108, 93
Yu, T. 2001, in ASP Conf. Ser., Vol. 238, Astronomical Data Analysis Software

and Systems X, ed. F. R. Harnden, Jr., F. A. Primini, & H. E. Payne
(San Francisco: ASP), 495


