

Designing for Peta-Scale in the LSST Database

Jeffrey P. Kantor, Tim Axelrod, Jacek Becla, Kem Cook, Jim Gray, Sergei Nikolaev, Ray Plante, Maria Nieto-Santisteban, Alex Szalay, Ani Thakar

A Quick Look at LSST

- Aperture diameter: 8.4m
- Effective aperture: 6.7m
- FOV: 3.5 deg
- Filters: u, g, r, i, z, y
- Observing mode: pairs of 15 sec exposures, separated by 5 sec slew
- Single exposure depth: 24.5
- Site: Cerro Pachon, Chile
- On sky: Late 2013

Key Requirements driving Data Management Architecture

Telescope,
Camera,
Survey
Reference
Designs

Key Requirements

- 4 missions
- (15s exp +2s r/o)*2 + 5s slew cadence
- 30s transient alert latency
- 2/yr data release frequency
- 10 degree² field of view
- 5 of 6 filters in carousel
- 0.2 arcsec optics
- 3.2 gigapixel focal plane array
- 5 milliarcsec astrometric precision
- 0.3% photometric precision

Key Derived Data Management Requirements

- 250 galaxies/arcmin² at r=27.8
- 140 stars/arcmin² at r=27.8
- · 60 days cadence for deep detection
- 5 stars/ arcmin² (average)
- 70 stars/ arcmin^2 (include. galactic center)
- 1% transient rate
- Open data access for up to 300 simultaneous users
- Open algorithm access for broader impacts

Functional Requirements Document (#355)

Operational Concept Document (#356)

UML Use Case, Domain Models (#466)

Data Products

- Images
- Catalogs
- Alerts

Algorithms/Pipelines

- Astrometric/Photometric Calibration
- Source Detection
- Source Object Association
- Moving Object Detection/Orbit Matching
- Alert Validity
- · Deep Detection/Association

Computing Architecture

- Multiple processing sites
- Sites specialized by role
- Layered architecture
- Automated data quality analysis
- Abstract data storage and extendable data
- Plug-and-play pipelines and abstract parallel processing machines
- Open, standard data access interfaces

Derived data and processing rates

6GB/60min*20

queries served

DMS Sizing Sustained (peak) processing: 105 (120) TFLOPS aggregate **Processing Functional** 8.5*10^4 ops/pixel, (#1193, 2116)Parallelism maximally exploited Requirements 6.4*10^6 ops/source, 98% availability Document 9.0*10^3 ops/object, (#355)4.7*10^7 ops/ moving object Sustained (peak) I/O Rates: Operational process an image in 17s 60 GB/s aggregate read, Concept Storage 6 GB/s aggregate write Document 2 - 3 Bytes/pixel transfer (#1779, 1989, 15 PB/year average growth (#356)1990, 1991) 4 Bytes/pixel process 0% data loss 4 Bytes/pixel archive, UML Use Case. 98% availability 300 Bytes/source, **Domain Models** 1.8 KB/object, 100 KB/alert (#466)6s ingest latency. Sustained (peak) bandwidth: 2.5x overhead 2.5 (10) Gb/s Communications 24 hrs /nightly (#1990, 1991)0.1% alert publication failure transfer to archive, 98% availability 300 concurrent users 0.5GB/10s*50 +

ADASS 2006

Tucson, AZ

October 16, 2006

LSST DMS Centers and Data Flows

Data Transfer and Long Haul Networks

Computing Requirements are within Supercomputing technology trends

Computing Requirements by Year

Data Catalog Volumes and Growth

Primary Data Base Tables and Queries

Queries Image Metadata Select all galaxies in given area -675 million rows* Object.type index Object.(ra,dec) index, full index scan -1 row = metadata for 1 fetch data rows ccd-amplifier Select transients var obj near a known galaxy VarObj.(ra,dec) full index scan Cone-mag-color search, ra, decl-best selectivity Object.(ra,dec) index fetch data rows Source Cone-mag-color search, color-best selectivity zMag index, full index scan 260 billion rows* grColor index, full index scan 2,000 partitions* izColor index, full index scan - 306 bytes/row Object.(ra,dec) index fetch data rows – 1 row=data for 1 filter Find extremely red galaxies Object.type index Object.izColor index, full index scan Object.xMag index, full index scan (x5colors) **Object** fetch data rows Select time series data for given cone – 22 billion rows* Source.(ra,dec) index, full index scan 2,000 partitions* join result w/objectId index - 1.8 KB/row join result w/tai index

1 row=data for 6 filters

ADASS 2 Tucson, AZ October 16, 2006

Sort, assume in memory

fetch data rows for Source

^{* -} as of Data Release 1, 2014

Application Layer with Data Flows

Data Access Framework

Data Access Framework - Open Interfaces

Data Base Framework

Distributed File Systems in the DAF

Large Synaptic Survey Telescope

- The DAF uses DFS for
- Staging input data for pipeline processing
- Staging output data for ingest
- Storing, replicating, and serving image files
- Current file systems under evaluation:
- GPFS, Google File System, Lustre, IBRIX

Data Challenges validate the Design

- Data Challenge 1 July October, 2006
 - Goal: Validate infrastructure and middleware scalability
 - Simulated data and applications running on TeraGrid
 - Simulated real-time data flows from Mountain to Base, through Nightly Pipelines, Ingest into Database, transfer to Archive, re-run Nightly Pipelines
 - Purdue cluster represents Mountain, NCSA represents Base Facility, SDSC represents Archive Center
- Results still tuning/improving, but results to date are:
 - 70 megabytes/second data transfers (>15% of LSST transfer rate)
 - 192 CCDs (0.1 1.0 gigabytes each) runs processed across 16 nodes/32 itanium CPUs with latency and throughput of approximately 75 seconds (>15% of LSST per node processing rate)
 - 4.5 megabytes/second source data ingest (>15% of LSST required ingest rate)
- Data Challenge 2 November, 2007 Validate nightly pipeline algorithms
- Data Challenge 3 November, 2008 Validate science pipelines, end-to-end data quality, and reliability
- Data Challenge 4 July, 2009 Validate open interfaces and data access