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Abstract. The most serious error in numerical simulations is the ac-
cumulation of discretization error due to the finite stepsize. Traditional
integrators such as Runge-Kutta methods cause linear secular errors to
the energy, the semi-major axis, and the eccentricity of orbiting objects.
Potter (1973) described an implicit second-order integrator for particles
in a plasma with a magnetic field. We have used this integrator for an
investigation of the dynamics of particles around a planet (or star) in a
co-rotating coordinate system. A big advantage of this numerical integra-
tor is its stability: the error in the semi-major axis and the eccentricity
depends only on the step size and does not grow with an increasing num-
ber of time steps. The argument of pericenter changes linearly with time
and more slowly than in the case of the Runge-Kutta integrator. In
addition, this implicit integrator takes much less computing time than
the second-order Runge-Kutta method. We tested this method for sev-
eral astronomical systems and for motion of an asteroid in a 1:1 Jupiter
resonance during 200 million time steps (about 5 million years or 800
thousand periods of asteroid resonance motion).

1. Introduction

In the last few years there has been great interest in the numerical study of long
term evolution of bodies of the Solar system. As the integration time increases,
the numerical results become more contaminated by various errors. The most
serious error is the accumulation of the discretization (truncation) error due to
a finite stepsize (or the replacement of continuous differential equations by finite
difference equations). The conventional integrators such as Runge-Kutta, multi-
step and Taylor methods, generate linear secular errors in orbital energy and
angular momentum. This means that the semi-major axis and the eccentricity
change linearly with time and the linear secular error in the semi-major axis
produces a quadratic secular error in the planetary longitude. A new symplectic
integrator produces no secular truncation errors in the actions of a Hamiltonian
system.

2. Implicit Integrator
In this paper we briefly discuss an implicit numerical integrator. The discretizati-

on errors in the energy, the semi-major axis, and the eccentricity by the implicit
second-order integrator show only periodic changes. The truncation error in the
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argument of pericenter grows linearly in time. The equations of motion of a
particle in the gravitational field of the Sun and the planet with mass m,,; in the
corotating coordinate system take the form:
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Here the total mass of the Sun and the planet is taken as the unit of mass,
and the distance between the planet and the Sun is taken as the unit of length.
The unit of time is chosen in such a way that the angular velocity of orbital
motion of the planet is equal to unity, and, hence, its orbital period is 27. Let
v =vy +ivy, o¥ =z + iy, and F* = F, + ¢ F,. We obtain rather than (1):
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We may solve the equation d(flgt) + R(U(t),t) = 0 with initial conditions

U(to) = Up by the implicit second-order integrator described in Potter (1973):

Sl U[nl—%(R["hrR[”“})At . (3)

In our equations (2), R is a function of z,y, z. We will calculate this function
R in space-time points n + 1/2. From (2) by the use of Eq. (3) we derive the
equations for new integrator (Taidakova 1990, 1995):
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Figure 1.  Numerical errors in the energy with second order Runge-
Kutta, fourth order Runge-Kutta and second order Potter integrator.
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where: zl"ta] = gl 4 v&n]At/2 o ylntal = gl 4 an]At/2 ;
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3. Numerical Examples

We tested this method for several astronomical systems (Taidakova 1995). In
order to see the properties of the implicit integrator, we first choose the 2-body
problem. Figure 1 shows the numerical errors in the energy log(AE/FE) in the
numerical integrations of the motion of the particle in circular orbit around
the Sun with different integrators. Figure 2 shows the errors in the parameter
Ay = /(z0 — 2:)? + (Vay — Vg;)? + (vy, — vy,)? , where i is the number of revo-
lutions, « is the coordinate (y = 0), and v,, v, are the velocities in the numerical
integration of the orbital motion of asteroid in the 1:1 Jupiter resonance during
200 million steps. The computer time with the implicit second-order integra-
tor is about 1.52-1.94 times faster than that with second-order Runge-Kutta
integrator.
The calculation were carried out in a PC with DX4/100.
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Figure 2. Numerical errors in the parameter A; with second order
Runge-Kutta method and second order Potter integrator.
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