
Astronomical Data Analysis Software and Systems VI
ASP Conference Series, Vol. 125, 1997
Gareth Hunt and H. E. Payne, e

 Copyright 1997 Astronomical Society of the Pacific.  All rights reserved.

ds.

Modeling AXAF Obstructions with the Generalized
Aperture Program.

D. Nguyen, T. Gaetz, D. Jerius, and I. Stern

Smithsonian Astrophysical Observatory, Cambridge, MA 02138

Abstract. The generalized aperture program is designed to simulate
the effects on the incident photon stream of physical obstructions, such
as thermal baffles and pre- and post-collimators. It can handle a wide
variety of aperture shapes, and has provisions to allow alterations of the
photons by the apertures. The philosophy behind the aperture program
is that a geometrically complicated aperture may be modeled by a combi-
nation of geometrically simpler apertures. This is done by incorporating
a language, lua, to lay out the apertures. User provided call-back func-
tions enable the modeling of the interactions of the incident photon with
the apertures.

This approach allows for maximum flexibility, since the geometry
and interactions of obstructions can be specified by the user at run time.

1. Introduction

The Advanced X-ray Astrophysics Facility (AXAF), due to be launched in 1998,
is the third of NASA’s four Great Space Observatories. AXAF will provide
unprecedented capabilities of high resolution imaging and spectroscopy over the
X-ray range of 0.1–10 keV.

As part of our efforts to support the AXAF program, the SAO AXAF
Mission Support Team has developed a software suite to simulate AXAF images
generated by the flight mirror assembly. One of the tasks of this system is to
simulate the physical obstructions in front of and behind the AXAF mirrors.

The generalized aperture program is designed to simulate the effects on the
incident photon stream of apertures in physical obstructions, such as the X-ray
and thermal baffles. It can handle a wide variety of aperture shapes, and has
provisions to allow alteration of the photons by the apertures. Apertures can
simply pass, block, redirect, modify, or generate new (e.g., fluorescent) photons.

2. The Generalized Aperture Description

The conventional approach to simulating physical obstructions is to assign ab-
solute positions and orientations to each aperture. This approach would be
tedious, error prone, and inflexible to changes in design later on.

The modeling of apertures as combinations of sub-apertures, and recogniz-
ing that the bookkeeping involved in tracking the photons through the apertures
is independent of any particular type of aperture, led structuring the program
into three components: the front end, central engine, and the back end.

485



486 Nguyen et al.

The front end, which parses the description of the openings and generates
lists of apertures against which to check the photons; the central engine, which
reads the photons and checks them against the apertures in the lists, and the
back end, composed of modules which model each of the apertures, are called
upon by the front end and central engine.

The three sections of the program are encapsulated so that a minimum of
information is exchanged between them, permitting integration of new modules
into the back end without affecting the rest of the program.

2.1. The Front End

The user interface The aperture program’s user interface is a programming
language, lua. Embedding an interpreted language such as lua in the front
end of the aperture program enables the application program aperture to be
programmable at run time. The lua language is a small language with flow
control (if..then, while..do..end, etc.), functions, floating point arithmetic, multi-
dimensional arrays and structures, and implicit dynamical memory allocation.

Aperture Positions and Orientations The aperture program uses the concept
of a local coordinate system in which each aperture is placed. It keeps track
of the transformations required to map between the external coordinate system
in which the input photon positions and directions are specified, and the local
coordinate systems of the apertures. It provides for the hierarchical layering of
coordinate systems:

• A global coordinate system, relative to which assemblies are specified.

• An assembly coordinate systems, relative to which either sub-assemblies
or apertures are specified.

• A sub-assembly coordinates systems, relative to which either nested sub-
assemblies or apertures are specified.

At each level, changes to the current coordinate system do not affect the
higher level coordinate systems.

2.2. The Central Engine

The generalized aperture program takes a list of assemblies and apertures created
by the front end, and compares each input photon to the apertures, in turn. It
calls functions provided by the back end modules, which do the actual checking
of the photons. It provides the logic to move the photon to the next assembly,
should an aperture accept a photon and pass it along.

2.3. The Back End

Each back end module consists of two components. The first is called by the
user’s aperture definition script, and creates an instance of an aperture with a
given set of aperture specific parameters, attaching it to the list of apertures
for the current assembly. The second component contains the logic necessary to
determine if a photon falls within it and is affected by it. Apertures can simply
pass, block, redirect, modify, or generate new photons (e.g., fluorescent).



Modeling AXAF Aperture Obstructions 487

3. Detailed Descriptions of the Aperture Program

The lua program creates assemblies and sub-assemblies, the assemblies are rep-
resented internally as a list of Assembly structures. The sub-assemblies are
temporary constructs which exist only to allow stacking of the current transfor-
mation matrix.

The back end modules called from the lua program create instances of aper-
tures by creating aperture-specific data objects which contain the information
necessary to fully describe the aperture. For example, an annulus is described
by its inner and outer radius; a rectangle by its height and width. The module
itself is described by an aperture module structure, which contains pointers to
standard routines provided by the module (aperture instantiation, initialization,
photon processing, and cleanup). This structure and the data object are passed
to the front end utility routine, which encapsulates them inside an abstract
object and appends that object to the list of apertures for the current assembly.

The processing of photons begins by reading in a photon. This is usually
done from the specified input stream, but may be done from a special internal
stack if any photons have been generated by an aperture. It then determines the
first valid assembly with which the photon will interact. Usually this is the first
assembly, but if the photon is generated by an aperture, the first valid assembly
is determined by the assembly to which the generating aperture belongs.

Beginning with this first valid assembly, the central engine simulates the
interactions of the photon with the apertures by an in-order traversal of the
assembly’s aperture list. At each visit of an aperture, the module associated
with the aperture is passed the data object specific to the aperture and a copy
of the photon data packet. It uses these data to determine whether it can
process the photon, and returns a code to the central engine indicating whether
or not it has accepted the photon for processing and the state of the photon after
processing. Normally, the module does not alter the contents of the photon data
packet; passing it a copy is a safety measure. In the event that it has done so
purposefully, it signals the central engine (via the return code) to transfer the
contents of the copied photon data packet to the original, so that the remaining
apertures interact with the modified photon.

Depending upon the returned code, the central engine may discard the
photon and read a new one, begin processing the next assembly in line, or re-
start the traversal of the current assembly. The last action is taken if the option
loop-mode is enabled and photons have been redirected or generated. It is the
only means by which a photon can successfully interact with more than one
aperture in an assembly.

References

Du Bois, P. F. 1994, Computers in Physics, 8,
Ierusalimschy, R., de Figueiredo, L. H., & Filho, W. C. 1995, Reference Manual

of the Programming Language Lua 2.11

1ftp://ftp.inf.puc-rio.br/pub/docs/techreports/95 12 ierusalimschy.ps.gz


