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Abstract. We present a new, Maximum Likelihood (ML) based, method
for the estimation of the shift between two images. It notably outper-
forms the classical cross-correlation method especially in the case of low
photon levels. Moreover, it is arbitrarily subpixel, without any resam-
pling of the image, through the maximisation of a criterion. The method
was tested with simulations and was applied to the case of infrared as-
tronomical imaging where the signal is usually very weak. We have also
extended our method to the joint estimation of the shifts in a sequence
of N images, and preliminary results are presented in last section.

1. Introduction

An accurate centering of a sequence of images is mandatory in thermal IR as-
trophysics to increase SNR while preserving the resolution of an instrument.
A classical method to estimate the translation parameters is the linear cross-
correlation of noisy images with a reference (Vanderlugt 1964, Kumar et al.
1992). Downie and Walkup (1994) showed that taking into account the noise
statistic can greatly improve the accuracy. Carfantan & Rougé have studied the
case of the subpixel estimation of the maximum of the intercorrelation of two
images with various interpolation for a stationnary gaussian noise (Carfantan
and Rougé 2001). Finally Guillaume et al. have studied the pixel accurate shift
estimation problem in the case of poissonian noise at low photon level (Guil-
laume et al. 1998). We have developped a new, Maximum Likelihood (ML)
based, method for the estimation of the shift between two images. It is arbitrar-
ily subpixel, without any resampling of the image, through the maximisation of
a criterion. We describe in section 2 the theoretical basis of the method. Then
in section 3, we present the results obtained with simulated images for different
types of noise (pure gaussian additive or mixture of stationnary gaussian and
poissonian noise). Results on real data are presented in section 4. We have also
extended our method to the joint estimation of the shifts in a sequence of N
images, and preliminary results are presented in last section.
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2. Description of the method

If we assume a reference r, the intensity at pixel (k, l) of the observed translated
image i1 can be written as:

i1(k, l) = [r(x, y) ∗ δ(x− x1, y − y1)]x(k, l) + b1(k, l) (1)

where (x1, y1) are the translation parameters, b is an additive noise, and x is
the sampling operateur. If the image is Nyquist sampled, one can reconstruct,
via the Fourier domain, a shifted version of the image for any subpixel shift.
If we approximate the noise in the image, i.e. a mixture of gaussian (detector)
and poissonian noise, as a non-stationnary gaussian noise, then the anti log-
likelihood of observing an intensity i1(k, l) for the reference intensity r(x, y) and
for the hypothesis µ = (x1, y1) is given by:

J (x1, y1) =
∑

k,l

1

2σ2

1
(k, l)

|i1(k, l)− [r(x, y) ∗ δ(x− x1, y − y1)]x(k, l)|2 (2)

where σ2
1

is the noise variance which can be directly estimated on the image. It is
easy to show that, following the two hypothesis of stationnarity of the noise and
of periodicity of the reference, the ML estimate of the translation between the
two images is the maximum of the linear cross-correlation of the images. When
the reference is not known, one has to consider a noisy frame as a reference.

i1(k, l) = [i0(x, y) ∗ δ(x − x1, y − y1)]x + b(k, l) (3)

Where b includes both the noise in the image used as a reference and the noise
in the image to be recentered. Then the anti log-likelihood to be minimize has
the same expression as in equation 2 changing r(x, y) into i0(x, y) and σ2

1
(k, l)

into σ2(k, l) = σ2

1
(k, l) + σ2

0
(x, y) ∗ δ(x− x1, y − y1) = 2σ2

1
(k, l) :

J (x1, y1) =
∑

k,l

1

4σ2
1
(k, l)

|i1(x, y)− [i0(x− x1, y − y1)]x|
2 (4)

To find the minimum of this criterion, we used a gradient type adaptive step
minimization algorithm, issued from a collaboration of our team with the Groupe
des Problemes Inverses at Laboratoire des Signaux et Systemes (GPI 1997).
However, one has to notice that the criterion, in the case of unknown reference
and considering the real noise variance contains a lot of local minima. This
make the minimization difficult and so should decrease the performance of the
method in this case.

3. Results with simulation

The method has been tested with simulations in the case of a mixture of gaussian
(detector) and poissonian noise. The gaussian noise variance is constant (10)
and the photon level in the images ranges from 1 to 106. The cross-correlation of
the two images is interpolated around its maximum to provide a sub-pixel esti-
mation. In the case of the known reference, our method, considering a constant
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Figure 1. Adaptive optics image of ARP 220 in the L-band with
NACO at VLT. Left image, frames registred with a classical cross-
correlation method and averaged, right, frames registred with our al-
gorithm and averaged..

noise variance, outperforms the cross-correlation at very low photon level (i.e.
number of photons smaller or equal to variance of the detector noise). When
we consider the real noise variance, our method gives more accurate results and
slightly outperforms the cross-correlation at high photon levels.

In the case of an unknown reference, the performance of our method is
quite identical considering or not the real noise distribution since the criterion
contains a lot of local minima in the first case. It notably outperforms the
cross-correlation at low photon level and allows subpixel accuracy as soon as the
number of photon per pixel is greater than the variance of the detector noise as
the accuracy of the interpolated cross correlation is worst than the pixel.

4. Results with real data

The method has also been tested and used with a set of raw images of Arp 220
from NAOS-CONICA (NACO) at VLT. Arp 220 is a typical Ultra Luminous
Infrared Galaxy, caracterised by a very powerfull emission in infrared bands but
very faint counterpart at the visible wavelengths. NACO is the only adaptive
optics system that allows to servo infrared source and so achieve diffraction lim-
ited images at a large telescope of such galaxies. A series of 85 images of this
galaxy have been aquired in the L-band in March 2003. The background dy-
namics of each image is around 80000 photons per pixel and the source dynamic
at the maximum is around 200 photons per pixel. This is the case where the
classical correlation of images is inefficient. Our method allows to recenter each
frame with a subpixel accuracy, and so to obtain the image displayed on Fig. 1.
The resolution of this image on the sky is about 0.1 ”, i.e. diffraction limited
for a 8-m telescope in the L-band.

This allows to compare this image to the one obtain with the space telescope
in other bands giving insightfull astophysical interpretations (see Gratadour et
al. 2003).
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5. Joint estimation of the reference and the translation parameters

If we consider now a series of images {ij(k, l)} randomly shifted, and if we try
to find simultaneously the shift parameters {µj} = {(xj , yj)} and the reference
image r(x, y), then the anti log-likelihood can be written as:

J ({ij(k, l)}; r(x, y), {µj}) =
∑

m

∑

k,l

1

2σ2
1
(k, l)

|im(k, l)−

[r ∗ δ(x − xm, y − ym)]
x

(k, l)|2

One can show that minimizing J ({ij(k, l)}; r(x, y), {µj}) on r(x, y) and {µj} is
equivalent to minimize: J ({ij(k, l)}; r(x, y) = rML(k, l), {µj}) on {µj}, with:

rML(k, l) =
∑

m

im(k, l) ∗ δ(x + xm, y + ym) (5)

It can additionnaly be shown (Blanc et al. 2003) that this joint ML solution
on r(x, y) and {µj} is identical to the ML solution on the sole {µj} assuming a
gaussian prior probability on r(x, y). The preliminary results show that, as in the
previous method (estimation of the shift between two images) the criterion which
considers the real noise variance contains a lot of local minima. This induce low
performance of the method in this case. But, if we consider a constant noise
variance, and we use the shift estimated with the previous method as guess for
the minimization of this joint criterion, the performance are better in the low
photon level domain (10 to 100).
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