Astronomical Data Analysis Software and Systems XIIT
ASP Conference Series, Vol. 314, 2004
F. Ochsenbein, M. Allen, and D. Egret, eds.

The SLANG/CIAO Synergy: Using S-Lang within CIAO

G. Germain, R. Milaszewski, W. McLaughlin, J. Miller

Harvard Smithsonian Center for Astrophysics
60 Garden Street, Cambridge, MA. 02138

Abstract. The integration of S-Lang into the Chandra Interactive Anal-
ysis of Observations (CIAO) infrastructure has transformed the capabil-
ities of CIAQ. There are several ways to use S-Lang. One is to write a
S-Lang function which can be called from C/C++, CIAO applications, or
any S-Lang prompt. Another is to write a C/C++ program which is made
into a S-Lang intrinsic, allowing it to be called from any S-Lang script.
The key element is that a C/C++ or CIAO application can call a S-Lang
function/intrinsic, and that a S-Lang function/intrinsic can call a C/C++
or CTAO application. To use this capability, data must be exchanged be-
tween the C/C++ space and S-Lang space. This paper describes some
of the mechanisms available for that data exchange. These mechanisms
are illustrated through simple C/C++ and S-Lang program pairs, the S-
Lang intrinsic methodology used by the CIAO S-Lang function “univar”,
and the use of the VARMM library by CIAO functions: Chandra Imaging
and Plotting Software (ChIPS) UNIVAR, and the Graphical File Browser
(PRISM) “histogram”.

1. Introduction

S-Lang is an interpreted language created by John Davis of the Center for Space
Research at MIT!. The S-Lang scripting language is embedded into CIAO, and
is used in several CIAO applications such as ChIPS and PRISM. It is avail-
able to CIAO users and developers for execution of their own S-Lang scripts, or
scripts contributed from other organizations. In addition, there is a large body
of analysis functions written in C or C+4 which can be used for data analysis.
For example, CIAO provides various functions which are used in CIAO, and
are available to developers and users. Two examples of these are the “univar”
and “histogram” functions. Once a user or developer acquires a facility with
scripting, and utilizing existing functions in those scripts, they acquire great an-
alytical power. With these techniques in hand, each language can be used when
and where they would be most beneficial. But to acquire this capability, users
and developers must know how to exchange information between C/C++ and
S-Lang, and call functions in one language from another. This paper describes
several methods available for that data exchange.

'"http://www.s-lang.org

408
(© Copyright 2004 Astronomical Society of the Pacific. All rights reserved.

The SLANG/CIAO Synergy: Using S-Lang within CIAO 409

variable x = 42;

% put the result on the Slang Stack

0 ——— if(-1 == SLang_pop_integer(&y))
{

Figure 1. S-Lang to C value exchange

int y=73; 73 variable x;
if(_{ 1 }== SLang_push_integer(y) % Pop(l)he value put on the stack by the C progran
x=0);

Figure 2. C to S-Lang value exchange

2. Simple Exchanges

S-Lang is a stack based language. One must learn how to make use of the stack,
to a much greater degree than in C or C++4, in order to do serious S-Lang
programming. For example, exchanging values between a C program and a S-
Lang script is done using the stack. To push an integer variable (e.g. “x”) onto
the stack, in S-Lang, the user stipulates the variable followed by a semi-colon:
“x;” (Figure 1). To capture that value in a C program, the user pops the value
off the stack with the “SLang_pop_integer” function. This works regardless of
data structure type. If “x” is an array of 10 floats, then “x”; pushes the 10
values on the stack.

In Figure 2, the C program pushes an integer value onto the S-Lang stack,
using the “SLang_push_integer” function. The S-Lang program on the right,
pops it off with the S-Lang “()” syntax. In S-Lang, “()=" pops a data structure
off the stack and discards it. “x = ();” pops a data structure off the stack and
assigns it to the S-Lang space variable, “x”.

In addition to exchanging values via the stack, C programmers can create
and manipulate S-Lang variables directly:

// Tell S-Lang to create the variable, x, and initialize it to 42
if (-1 == SLang_load_string(‘‘variable x = 42;°°)) {...... }

There are two ways a user can run the programs and scripts which exchange
data. One method requires two windows: one in which the C program is run,
and another with a S-Lang prompt. Alternatively, a C program can execute a
S-Lang script using the “SLang load_file” function.

These are the simplest methods of exchanging data; all subsequent method-
ologies are based upon these basic operations. The necessary C/C++ functions
are found in “slang.h”. These are the methods to be used when minimal coupling
between scripts and functions is required.

3. C/C++ Intrinsics

S-Lang has many strengths, such as array manipulations. But for heavy math-
ematical processing C or C++ is a better choice than an interpreted scripting
language. S-Lang provides a means to incorporate functionality best written in

Germain, Milaszewski, McLaughlin & Miller

#include "slang.h"
extern "C" { int init_univar_module(void); }

void univar_cpp(double* xin,
SLang_Array_Type* xbkpts,
SLang_Array_Type* ybkpts)

{
int cntx = xbkpts—>num_elements,
cnty = ybkpts—>num_elements;

//'If segment slope is vertical, set status to "vertical"

% input breakpoint arrays
variable xbp,ybp;

% output variables
variable status, yout, evalout;

% create the breakpoint arrays
% Vastly oversimplified!
xbp =[.1:.9:.1];
ybp=[.1:9:.1];
xin = 0.05;
% make the intrinsic available to S-Lang
import("univar");

% use the intrinsic, popping the results
% off the stack

// push status and left breakpoint y value onto stack
if(({xmax — xmin) == 0.0)

(status, fout) = univar(xin, xbp, ybp);
status = vertical;
SLang_push_integer(status); ﬁ<
SLang_push_double(((double*)ybkpts—>data)[ii]);
return;

}

else // otherwise calculate the slope
slope = (ymax — ymin) / (xmax — xmin);

42.0

} /1 end function univar_cpp

int init_univar_module(void)

{

if (=1 == SLadd_intrinsic_function ("univar",

(FVOID_STAR) univar_cpp,

SLANG_VOID_TYPE,
SLANG_DOUBLE_TYPE,
3

SLANG_ARRAY_TYPE,
SLANG_ARRAY_TYPE

return —1;
return 0;

i

Figure 3. The C Intrinsic Method

C, into a S-Lang script. To do this, the user casts the C function into a S-Lang
intrinsic, making it just as available to the user as “sin(x)”.

Figure 3 illustrates the method used to make and use a C++-based S-Lang
intrinsic. On the left is the CIAO function “univar”; written in C++, built as
a module, and made into a S-Lang intrinsic. It is available for direct use in any
S-Lang script the CIAO user wishes to write.

To make “univar” known to S-Lang, the user must supply the function
“init_univar_module”. S-Lang calls the function automatically.
“init_univar_module” contains the key function call which adds the intrinsic:
“SLadd_intrinsic_function”.

The S-Lang script on the right, in Figure 3, shows how a S-Lang intrinsic is
used. The S-Lang programmer must first import the module, as shown. When
called, the user passes in an x input (xin), an array of x breakpoints, and an
array of corresponding y breakpoints (xbp, ybp). “univar” returns the result by
pushing a status value indicating the mathematical validity of the result, and
the interpolated value, onto the S-Lang stack. The S-Lang script captures the
resultant values off the stack using the “(status, yout)” stack popping syntax,
as shown in the script.

4. Application Use of Embedded Libraries.

Writers of S-Lang and S-Lang/C++ scripts often need common functionality
such as FITS or ASCII file operations and data structure representation. In

The SLANG/CIAO Synergy: Using S-Lang within CIAO 411

the previous examples, S-Lang variables that are created and are to map to
corresponding C++ variables, must be kept synchronized by the programmer.
To simplify S-Lang/C++ integration, CIAO provides the programmer with
VARMM: a library of classes and methods which is a data interface between
C++ and S-Lang (S. Doe, et. al. 2000). VARMM provides classes for data
representation, methods to manipulate those data structures, FITS and ASCII
file operations, and a simple API. VARMM data elements can be linked to their
S-Lang variable counterparts so that a change in the value of the S-Lang vari-
able changes the value in the VARMM object. VARMM ASCII or FITS file
read operations can create VARMM and S-Lang data structures containing the
file input values.

For a brief illustration of how VARMM can be used, we choose a CIAO
C++ application, PRISM, which is commanded to plot a histogram of a selected
column of a FITS file. PRISM invokes ChIPS and commands ChIPS to forward
the following statement to the S-Lang parser:

prism_data = readbintab(“pe.fits[2][cols pha]”);

“readbintab” is a VARMM library method which opens the FITS file,
pe.fits, creates the S-Lang data structure, “prism_data”, extracts the “pha”
column of data, and stores the data in “prism_data”. PRISM will send a sub-
sequent command to ChIPS to execute the S-Lang script, “histogram”, which
results in the histogram plot. “prism_data”, a variable in S-Lang scope, is avail-
able to the “histogram” script as well as any other script the programmer wishes
to write and execute.

5. Conclusion

S-Lang is integrated with CIAO and can be used in conjunction with C or C++
programs to gain enhanced analysis capabilities. Users can select either S-Lang
or C/C++; whichever is most appropriate for the application. Using S-Lang and
C together requires methods to exchange data between the two scopes, using the
S-Lang stack. Simple exchanges can be done using push and pop commands in
S-Lang, and, for C, push/pop functions found in “slang.h”. C programs can
issue S-Lang commands directly or invoke S-Lang scripts. This provides the
simplest interface and the least coupling between the script and the C program.
C/C++ functions can be integrated into S-Lang scope by making them into a S-
Lang intrinsic, allowing the functionality to be distributed. Common functions
needed by most programmers, such as file I/O, data structure creation and
synchronization, are supplied by VARMM. VARMM also supplies an API which
makes integration of S-Lang and C+-+ much simpler.

Acknowledgments. This work is supported by the Chandra X-Ray Center
under NASA contract (NAS8-39073).

References

S. Doe, M. Noble, and R. Smith 2000, Interactive Analysis and Scripting in
CIAO 2.0, ADASS X, P2-41

J. E. Davis 2003, S-Lang Library C Programmer’s Guide, V1.4.2

