
Astronomical Data Analysis Software and Systems XIII
ASP Conference Series, Vol. 314, 2004
F. Ochsenbein, M. Allen, and D. Egret, eds.

The ALMA Software System

Joseph Schwarz, Heiko Sommer

European Southern Observatory, Garching, Germany

Allen Farris

National Radio Astronomy Observatory, Socorro, NM

Abstract. Prospective users, instrumentation and location of the Ata-
cama Large Millimeter Array (ALMA) all present its software developers
with major challenges. The development of this software will be dis-
tributed among many institutes on two continents, mimicking the soft-
ware itself, which will have to function in a distributed environment,
spanning the 0.5-10 km baselines between antennas, as well as the much
larger distances that will separate the array site at the 5000m-high Llano
de Chajnantor, the Operations Support Facility in San Pedro de Ata-
cama, the Santiago Central Office, and the ALMA Regional Centers in
North America and Europe.

To make distributed development successful, we have defined inter-
faces that allow separated groups to work independently of their counter-
parts at other locations as much as possible. We have defined a common
architecture and infrastructure, so that work done at one location is not
unnecessarily duplicated at another, and that similar tasks are done in a
similar way throughout the project. A single, integrated Archive attends
to the needs of all subsystems for persistent storage, and hides details of
the underlying database technology. The separation of functional from
technical concerns is built into the system architecture through the use
of the Container-Component model: application developers can concen-
trate on implementing functionality in runtime-deployable components,
which in turn depend on Containers to provide them with services such
as access to remote resources, transparent serialization of value objects
to XML, logging, error-handling and security. The resulting middleware,
which forms part of the ALMA Common Software (ACS), is based on
CORBA and XML.

1. Introduction

The Atacama Large Millimeter Array (ALMA) is a joint project of the North
American and European astronomical communities, with Japan likely to join in
2004. It will consist of 64 antennas each 12 meters in diameter which will work as
an aperture synthesis telescope to make detailed images of astronomical objects.
They will be positioned as needed with baselines from 0.5 to 14 kilometers so

643

c© Copyright 2004 Astronomical Society of the Pacific. All rights reserved.



644 Schwarz, Sommer & Farris

as to give the array a zoom-lens capability, with angular resolution reaching 10
milliarcseconds. ALMA will represent a leap of over two orders of magnitude
in both spatial resolution and sensitivity, making it ideal for medium scale deep
investigations of the structure of the submillimeter sky. It will operate at an
altitude of ∼ 5000 meters on the Llano de Chajnantor in Chile’s Atacama desert.

1.1. ALMA Schedule

The first of the 64 antennas is expected to be on site in 2006, followed by the
first production receiver (4-band) in Q2 of 2007. A few months later, when 6-8
antnnas have been commissioned, early ALMA science operations will start; the
full antenna complement will have arrived in early 2012, at which point ALMA
will begin full science operations.

2. Software Scope

2.1. From the cradle to the grave. . . and beyond

The ALMA software needs to handle all phases in the life of an observing project,
i.e., 1) Proposal Preparation; 2) Proposal Review; 3) Program Preparation; 4)
Dynamic Scheduling of Programs; 5) Execution of the Observations themselves;
6) Calibration & Imaging; and 7) Data Delivery & Archiving. Even after the
data has been delivered to the PI, the work of the software is not done. The
system must support Internet-based archival research once any proprietary rights
to the data have expired. In this regard, the ALMA Science Research Archive
will be one of the first to have VO Compliance designed-in from the start.

At the same time, the software is required to make millimeter interferom-
etry accessible even to the uninitiated (while preserving the expert’s ability to
exercise full control). As ALMA’s Science Software Requirements state:

“The ALMA software shall offer an easy to use interface to any
user and should not assume detailed knowledge of millimeter astron-
omy and of the ALMA hardware.

“The general user shall be offered fully supported, standard ob-
serving modes to achieve the project goals, expressed in terms of
science parameters rather than technical quantities...”

Of course, when complexity is swept under the rug for the sake of the
neophyte user, the resulting lump remains. What is made simple for the user
will therefore be complex for the software developer. One goal of the system
architecture should be to relieve the developer of unnecessary complexity. Our
primary vehicle for achieving this is the separation of functional from technical
concerns, which is discussed below.

2.2. The numbers

ALMA’s baseline correlator will produce ∼ 1 Gbyte/s, which the software must
Fourier-transform from the time to frequency domain and reduce to average/peak
data rates of 4/40 Mbyte/s. The data that results from the later imaging of this
raw uv -data will increase these figures by about 50% to 6/60 Mbytes/s, implying
∼ 180 Tbyte/y to archive. (As the experience of the Hubble Space Telescope



The ALMA Software System 645

shows, Archive access rates could be a factor of ∼5 higher.) The wish to support
recent enhancements to the hardware of the baseline correlator has produced a
proposal to raise these figures to 25/95 Mbyte/s, demonstrating the need for the
software to be flexible and scalable enough to adapt quickly to dramatic changes
in requirements.

Amidst this storm of incoming data, the online calibration software must
be able to calculate pointing & focus corrections, phase corrections & average
phase noise and feed these results back to the observing process in ∼ 0.5 s, so
that antenna pointing & focus can be adjusted in near-real-time and the time
spent observing target and phase calibrator can be adjusted to match rapidly
changing atmospheric conditions (Lucas 2004).

Once observations belonging to a given Observing Program are complete,
the science data processing, i.e., the production of images via calibration, Fourier
transformation and deconvolution, must keep pace (on average) with the rate of
data acquisition.

Another important number to keep in mind is the dozen or so institutes on
two continents that take part in the development of software for ALMA. The
fact that this first number exceeds unity by an order of magnitude conditions
many of the architectural and process-related choices we have made, as we will
discuss below.

Table 1. Run-time Issues
Challenge Response
Changing observing conditions Dynamic Scheduler
High data rates Integrated scalable Archive
Diverse user community (novice to expert) Flexible observing tool, GUIs
Distributed hardware & personnel
AOS: antennas at 0.5-14 km from correlator High-speed networks
AOS-OSF: operators are 50 km from array Distributed architecture
OSF-SCO-ARCs: PIs, staff, separated from CORBA & CORBA services
OSF by 1000s of km, often by many Container/Component model
hours in time zone XML serialization

3. Development Approach

3.1. Separation of Concerns

Expressing the complexity in software of operating a mm-wavelength interferom-
eter is difficult enough for the developer without the additional burden of having
to know in detail the computer science domains of remote access, network pro-
tocols, and database technology. The separation of functional from technical
concerns is a strategy for enabling the application developer to concentrate on
the physics, algorithms, and hardware details of aperture synthesis interferome-
try, while a specialized, system-oriented team provides an easy-to-use technical
infrastructure of communications, database, and security facilities.

The functional architecture further divides these interferometry-related tasks
into subsystems that can be developed in relative independence from each other.



646 Schwarz, Sommer & Farris

The technical architecture furnishes these subsystem developers with simple and
standard ways to 1) access remote resources; 2) store and retrieve data; 3) man-
age security needs; and 4) communicate asynchronously with other subsystems
and components. In the end, separation of concerns is no more than a variant
of the divide-and-conquer strategy that Caesar used to conquer Gaul 2000 years
ago.

3.2. The difficult issues

The preceding discussion gives an idea of the difficulties that ALMA software
development must confront. Tables 1 and 2 summarize these problems and how
we are addressing them. The most important of these will be discussed later in
this paper.

Table 2. Development-time Issues
Challenge Response
Evolving requirements Iterative development
Changing data rates Modular, flexible design
New observing modes Scriptable observing procedures
New hardware (ACA) Generic, parameterized design
IT advances Isolation of system-dependent S/W
Distributed development Unified architecture (HLA)
Different s/w cultures Functional subdivisions aligned to existing

project organization
Common Software (ACS)
Don’t do it twice (but if you really must do the
same thing, do it the same way everywhere)

E-Collaboration tools

3.3. Why dynamic scheduling?

To maximize the scientific return of ALMA, it is essential that the observatory
be able to exploit the somewhat rare and unpredictable moments when the wa-
ter vapor level in the atmosphere is low enough, say between 0.2 and 0.5 mm,
to permit observing in the largely unexplored frequency range of 500-1000 GHz.
This will be done by operating ALMA in service mode, using a dynamic sched-
uler (Farris & Roberts 2004) that can react quickly to changing atmospheric
parameters, choosing observing programs of the highest scientific priority that
will exploit the conditions of the moment.

The principle construct that makes dynamic scheduling possible, is the
Scheduling Block [SB], a software object defined to be an indivisible unit of
observing activity. Once execution of an SB has started, it can be aborted but
not restarted in the middle. An SB will be self-contained to the extent that it
will contain all project-specific observations necessary to allow calibration of the
data that it produces (typically phase and possibly bandpass calibration; more
general calibrations, such as baseline determination and determination of the
pointing model, are the responsibility of the ALMA Observatory and lie outside
the province of a PI’s SBs). The dynamic scheduler will be able to query each



The ALMA Software System 647

Figure 1. A very schematic view of the ALMA system data flow.

SB to answer questions such as 1) What array hardware (e.g., antenna configu-
ration, receiver bands) do you require? 2) What atmospheric conditions do you
need?

The nominal execution time for an SB will be about 30 minutes; PIs can
specify longer SBs, but the dynamic scheduler will tend to prefer the shorter
ones, all other factors being equal, since these enhance its ability to react to
changes in observing conditions. As many, if not most observations of interesting
targets will require longer integration times than a single SB allows, multi-SB
observations will be the rule, rather than the exception. Quite often, these SBs
will not be executed consecutively, but this only presents problems for rapidly
varying (pointlike or solar-system sources), for which use of longer SBs will be
unavoidable. When an SB has finished execution, either because it has achieved
its performance goals or because it has reached its time limit, the scheduler will
repeat its selection process.

4. System data flow

Figure 1 shows, in an admittedly oversimplified fashion, the flow of ALMA data
from Observing Proposal through Scheduling, Data Acquisition, Calibration,
Imaging, Archiving and final delivery to the PI.

4.1. The Archive at the Core

As can be seen from Figure 1, practically all data acquired or generated by the
ALMA software system will be saved in its integrated Archive (Wicenec 2004,



648 Schwarz, Sommer & Farris

Meuss 2004). Much more than what we usually think of as a “science archive,”
the ALMA Archive will hold not only raw and processed scientific data, but
observing proposals and programs, a history of site environmental conditions,
and hardware characteristics and calibrations. To accommodate the rapidly
inflowing raw data, the Archive will be optimized to handle high streaming
input/output rates, but will be able to support only significantly lower random
access rates. In general, the Archive will deal with three types of data: 1) Bulk
data, characterized by high volume and a moderate number of records; this will
be stored as binary attachments to VOTable headers; 2) Monitor (“engineering”)
data, consisting of a moderate volume but large number of records; and 3) “Value
objects,” low volume, complex searchable structures such as Observing Projects
& Scheduling blocks, Configuration information and Meta-data providing link
to bulk data (e.g., via VOTables).

A Data Access Layer interface to these types of data has been defined,
allowing the underlying database technology to be hidden from subsystem de-
velopers. The existence of this interface will give the Archive developers the
ability to replace this technology when and if it becomes necessary or desirable
to do so.

4.2. Components & Containers

The Container/Component model (Völter 2003) furnishes us with the framework
for the separation of functional from technical concerns in the development pro-
cess. It is similar to frameworks provided commercially by Sun’s Enterprise Java
Beans, Microsoft’s .NET and the OMG’s CORBA Component Model. Briefly,
a Component is a unit of software with a well-defined functional (or “service”)
interface that is deployable inside a Container, upon which it depends for the
technical services it needs. This division lets subsystem developers focus on
functionality, rather than the details of, for example, remote communication
and deployment. The Component also implements a lifecycle interface, accessi-
ble only by the Container, that allows the Container to manage the Component’s
initialization, execution and shutdown. Both the functional and lifecycle inter-
faces are defined in CORBA IDL, which gives developers at least the theoretical
option to implement their components in any language which has an IDL map-
ping. The ALMA architecture in fact provides Container implementations (and
therefore allows Component implementation) in C++, Java and Python. A
subsystem may contain an arbitrary number of components.

The Container’s job is to handle technical concerns centrally and hide them
from application developers. It provides convenient access to other components
and resources, selected CORBA/ACS Services (Error, Logging, configuration,
. . . ) and enables decisions about deployment (which component(s) should run
on which hardware) and start-up order to be deferred until run-time. Should we
see a need for additional technical services in the future, these can be integrated
into the Container, minimizing any modifications that must be made to the
application (Component) software.

Figure 2 illustrates the relationships between Components and their Con-
tainers, and between Components and other Components with which they com-
municate.



The ALMA Software System 649

Figure 2. The Container/Component environment.

Role(s) of XML An important contribution to the capabilities of the Con-
tainer/Component framework comes from the multifaceted use of the eXtensi-
ble Markup Language or XML (Sommer 2004). We define the structure and
content of “Value Objects”, complex data objects such as Observing Projects,
Scheduling Blocks and VOTable headers via XML schemas. Binding classes that
allow type-safe native language access to these data structures and that can val-
idate compliance with these schemas are generated automatically by an open-
source framework. The Containers provide transparent serialization of these
Value Objects to XML, enabling subsystems to exchange and modify them in a
language-independent way. Moreover, the Archive has been designed to accept
such schema-conformant XML documents directly.

We are currently investigating the utility of generating the XML schemas
themselves from an overall observatory data model expressed in the Unified Mod-
elling Language (UML). This approach holds out the promise of more efficient
maintenance of the data model itself, drastically shortening the time needed to
incorporate the (inevitable) changes to the model that the evolution of ALMA
and of our own understanding will make necessary.

4.3. Data reduction pipelines

We will not attempt to recreate or rewrite the vast body of software that ex-
ists to process and analyze the data from radio aperture synthesis telescopes,
but will rely on the reuse of such software, in particular, on AIPS++ as the
data reduction engine for ALMA (Davis 2004). A subgroup of ALMA’s Science
Software Requirements Committee has audited AIPS++ for compliance with
the requirements of ALMA, and has identified those areas where functionality is
lacking or performance is inadequate. A joint group of AIPS++ project mem-
bers and ALMA developers are addressing these concerns. Another joint effort,
in this case by IRAM and AIPS++ staff, has verified the suitability of AIPS++
for the reduction of mm data from the interferometer at Plateau de Bure. Sys-



650 Schwarz, Sommer & Farris

tematic benchmarking of AIPS++ has led to major performance improvements
during 2003, so that we are now confident that the package will be able to meet
ALMA’s goals for rapid processing of the acquired data.

Meanwhile, AIPS++ itself is evolving to use a standard, open-source script-
ing language (Python) to replace its existing, bespoke scripting language (glish).
A proof of concept effort is underway to recast AIPS++ tools as Components (in
the sense discussed previously), using the C++ and Python Containers provided
by ACS. The first phase of this three-phase project has completed successfully,
giving us reason to hope that AIPS++ will integrate seamlessly into the ALMA
software environment.

4.4. ALMA Common Software (ACS)

The ALMA Common Software (ACS) implements the separation of functional
from technical concerns, especially the Container/Component model. More gen-
erally expressed, ACS is a framework for a distributed object architecture that
is used from the highest level software all the way down to the device level
in the subsystems that control antennas, receivers and correlator (Jeram 2004).
Built on CORBA, ACS hides CORBA’s considerable complexity, wrapping those
CORBA services used by ALMA.

ACS has been carefully designed to be independent of commercial software,
for example through the use of high-quality open-source ORBs such as TAO and
JacORB. It is constantly evolving to meet developers’ needs, having reached, as
of this writing, Release 3.0. The most recent developments have included the
implementation of the Python Container, needed by the subsystem responsible
for pipeline data processing, and an all-Java version (albeit with reduced func-
tionality), which is necessary for the developers of the Observing Tool to provide
software that can be installed on almost any astronomer’s desk- or laptop com-
puter.

At the start of the ALMA software effort there was considerable resistance
by developers to the discipline and standardization that is a consequence of ACS.
It is testimony to the soundness of the concept of common software, the quality
of its implementation and the dedication of the ACS team that developers are
now asking that ACS offer more features and support for their activities.

4.5. Avoiding nasty surprises

The history of software development is littered with the ruins of projects that
failed to meet the promises of their managers or the needs of their intended users.
It is generally recognized that it is only the rare project that re-implements an
existing system that can hope to freeze the requirements early in its lifetime.
As an experiment in the truest sense of the word, ALMA is certainly not such
a project. We have already encountered changes in our requirements and as the
characteristics of the hardware become clearer and an operations plan is finally
agreed upon, we must expect more. To mitigate the impact of these changes,
we follow an iterative development cycle: integration of all subsystem software
is performed by a dedicated Integration & Test team every month. Significant
additions to the system’s functionality come with bi-annual releases, interspersed
with annual design reviews (somewhat iconoclastically termed “Critical Design



The ALMA Software System 651

Review No. 1, 2, . . . ”) that concentrate on the functionality to be developed
during the coming year.

To date, the ALMA Software System has completed an Internal Design
Review, a Preliminary Design Review with reviewers external to the comput-
ing group, the first “Critical” Design Review, and two code releases. The first
of these code releases, R0, tested the build procedures and tools and a mini-
mal amount of code, while the second release, R1, successfully implemented a
skeletal end-to-end data flow, testing interfaces, communications mechanisms,
and developers’ understanding of them. The R1.1 release will concentrate on
eliminating the problems and mismatches uncovered in R1, while R2 will aim at
providing a useable system for the Antenna Test Facility at the site of NRAO’s
Very Large Array (VLA) in New Mexico. Later releases will build towards sup-
port of Early Science Operations in 2007 and, with the benefit of experience in
the use of earlier versions of the software, of Full Science Operations in 2012.

It remains to learn from the sad fate of projects whose end product evokes
the following from their customers: “It’s beautiful software but not what we
wanted.” We believe that the key to avoiding such a regrettable epitaph is to
ensure that user participation doesn’t end with the publishing of a requirements
document. To this end, a scientist expert in the problem area is assigned to every
subsystem development team with the task of 1) providing advice and help to
solve problems during development; 2) making sure that requirements are met
and that the requirements themselves are up to date; 3) evaluating subsystem
progress and redefining requirement priorities when appropriate; 4) ensuring
that subsystems interface properly; and 5) helping to develop a test plan and to
perform periodic testing and evaluation of the software from a scientific user’s
perspective.

The user tests represent the culmination of a comprehensive testing strategy.
At the lowest, or most detailed level, subsystem developers are responsible for
unit tests that verify the correctness of pieces (typically, classes or small groups
of collaborating classes) of code. Tools such as JUnit, pyUnit and cppUnit are
commonly employed to automate and standardize these tests. A “test first”
attitude is encouraged. Subsequent automatic performance tests will be used to
ensure that timing constraints are met and that data throughput is adequate.
The stand-alone subsystem user tests referred to earlier will be performed before
subsystem releases with adequate time to allow subsystem developers to respond.
Finally, integrated user tests that exercise the complete system will be executed
as soon as possible after integrated subsystem releases.

4.6. High-level Analysis & Design

The authors of this paper form the ALMA Computing IPT’s High-level Analysis
& Design (HLA) group. HLA develops and maintains the system architecture
and fosters its implementation in close cooperation with the ACS team. Over-
seeing subsystem-subsystem interfaces and guiding the planning for incremental
releases constitute another part of HLA’s activities. Finally, the HLA group
collaborates with the Integration & Test (ITS) and Software Engineering (SE)
groups to improve the ALMA software development process.

Under the guidance of a management team anchored on both sides of the
Atlantic, these collaborations among HLA, ACS, ITS and SE will play an impor-



652 Schwarz, Sommer & Farris

tant part in ensuring that the distributed development of the ALMA software,
by bringing the scientific and software expertise of many diverse participants to
bear on the challenges facing it, can outweigh the added communications effort
needed and ultimately prove a major factor in the project’s success.

References

Bridger A. et al. 2004, this volume, 85
Davis, L. et al. 2004, this volume, 89
Farris, A. & Roberts, S. 2004, this volume, ??
Jeram, B. et al. 2004, this volume, 748
Lucas, R. et al. 2004, this volume, 101
Meuss, H. et al. 2004, this volume, 97
Sommer, H. et al. 2004, this volume, 81
Völter, M. et al. 2003, Server Component Patterns, (New York: Wiley)
Wicenec, A. et al. 2004, this volume, 93


