Astronomical Data Analysis Software and Systems XIIT
ASP Conference Series, Vol. 314, 2004
F. Ochsenbein, M. Allen, and D. Egret, eds.

Compare: A Scaleable and Portable Catalog
Cross-Comparison Engine for the NVO

Serge Monkewitz, John Good

Infrared Processing and Analysis Center, California Institute of
Technology, Pasadena, CA

Abstract. We describe the architecture of a general cross-comparison
engine capable of spatially matching sources in one astronomical source
catalog with those in another. The software is highly modular and is writ-
ten in portable C+4. By performing many cross-comparisons of small
sky regions in parallel, the software will scale to very large input catalog
sizes. Support is provided for common catalog formats and data sources
(e.g. local disk, database servers), and the addition of support for custom
data formats and sources is simplified by the modular architecture em-
ployed. Hooks for customized source pre-processing and match-list post-
processing are also available. Taken together, these attributes will make
Compare a powerful package for cross-comparing astronomical catalogs
on all scales and for cross-identifying sources between catalogs, allowing
it to serve the needs of both large projects and individual astronomers.
In particular, the package will be installed at San Diego Supercomputer
Center, where it will perform cross-comparison between large-scale cata-
logs (such as MACHO and 2MASS) housed there. When complete, it will
be a cornerstone compute service for the NVO. We have applied an early
version of the package to the cross-comparison of the SDSS Early Data
Release and the 2MASS 2nd Incremental Data Release catalogs, a compu-
tation central to the NVO Brown Dwarf demonstration project. Despite
being performed sequentially, the comparison of 9.8 million SDSS sources
to 0.5 million 2MASS sources completed in approximately 100 seconds
when run on a 4 CPU Sun V480 with 16GB of memory.

1. Introduction

The Compare software package is a framework for performing spatial joins
between two lists of astronomical source positions. For each source s in a primary
catalog P, it finds all sources in a secondary catalog S within a given angular
distance d,,, of s. This will be referred to as the match list for s, and corresponds
to a list of candidates in S which might be observations of the same astronomical
object as s. In addition, the software finds all the sources s, € P such that
Vt € S, dist(sp,t) > dy, (the primary no-match list), as well as all sources t,, € S
such that Vs € P, dist(s,t,) > dp, (the secondary no-match list). The process
of cross-comparing two catalogs is a necessary first step when cross-identifying
observations from different missions, but also has many other applications. It can

589
(© Copyright 2004 Astronomical Society of the Pacific. All rights reserved.

590 Monkewitz & Good

for example be used to pick a ”best” observation from a cluster of observations,
to merge or group observations in some way, or to help identify artifacts in a
catalog.

2. Design Goals

The primary goals targeted by the Compare software package are high perfor-
mance regardless of input catalog size, generality (the ability to process catalogs
of arbitrary size and format on a variety of run-time platforms), and extensibil-
ity. The existing cross-comparison codes at IRSA! suffer from various limitations
which render them incapable of meeting these goals. They were written for a
fixed hardware platform and do not make any attempt to be portable; they are
tied to specific input and output data formats; finally, they operate on fixed
column sets, limiting their use to specific catalogs. This last limitation means
that any processing requiring column values not initially retrieved requires an
additional pass through the potentially very large input catalogs. Compare is
designed to overcome all of these limitations.

3. Design

The software, written in portable C++, is partitioned into five major compo-
nents:

Data Access: The component responsible for reading source positions (as well
as any other requested fields). Implementations which read data from
ASCII/binary table files and from Informix database tables are provided.

Source List Processing: A component which can filter sources, as well as
modify or generate the data fields associated with each source.

Cross-Comparison This component computes match lists as well as primary
and secondary no-match lists.

Match List processing This component allows for customizable match list
filtering and processing.

Data Storage This component is responsible for storing match and no-match
lists. Implementations which store data to ASCII/binary table files are
provided.

These are illustrated in Figures 1 and 2. Each component implementation
conforms to a simple interface, and communication between different compo-
nents is limited to the consumption and production of sources and match lists.
This makes it easy to add support for new input/output data formats, cross-
comparison algorithms, and source or match list processing modules. Writing a
working cross-comparison application becomes a matter of choosing and linking
component implementations.

!Infrared Science Archive: http://irsa.ipac.caltech.edu

Compare: A Catalog Cross-Comparison Engine 591

Source List

Filter and Process Source List
Iil

e -
— — -

4>
" cross-comparison

EE-

Figure 1. Data access and source list processing

Primary Secondary match lists

I g I
[N

> [Nt Process
Filter \E

Primary no-matches
\ \ \ |
— |~ =

Filter Process

Source List1 Source List?2

Secondary no-matches
\ | \ [

==

Filter Process

Figure 2. Cross-comparison, match list processing, and data storage

592 Monkewitz & Good

4. Implementation and Scaleability

The problem of scaling to very large catalog sizes is handled by splitting the sky
into smaller disjoint regions which fit into machine RAM. A single Compare
process is only capable of cross-comparing sources one region at a time; however,
regions can be distributed across multiple Compare processes for simultaneous
execution. It is important to note that the single largest performance bottleneck
is I/0, so performance gains from parallelization will be modest unless I/0 is
also partitioned across multiple independent storage devices. Redundant I/0O
can be avoided by spatially indexing the input catalogs, and by performing
all required source and match-list processing inside Compare. To summarize,
high performance (when comparing large catalogs) requires high 1/O bandwidth
and spatially ordered data-access, a fast way to retrieve sources very close to a
position, and a fast way to retrieve sources for larger regions of the sky.

4.1. Results

An early version of the Compare software was used by the NVO? Brown Dwarf
Demonstration Project®. The prototype compared 9.8 million SDSS sources to
0.5 million 2MASS sources, finding 326020 source pairs within 3 arcseconds of
each other in approximately 100 seconds. Roughly 80% of execution time was
spent in I/O. Further confirmation that I/O is the major performance bottle-
neck for large-scale cross-comparisons is the fact that a series of simple SQL
queries which retrieve the entire 2MASS working point source catalog (1.3 bil-
lion sources, 1.2TB of disk) take a total of around 4 days to complete.

5. Applications and Future Work

Compare was funded by the National Partnership for Advanced Computational
Infrastructure as a demonstration project for Grid computing, and as such will
be ported to the Tera-Grid as soon as it matures. Furthermore, spatial joins of
the 2MASS, SDSS, USNO, and MACHO catalogs are planned, with results to
be served as publicly available data sets. In the interest of promoting research,
we would like to make source code for the software available to individual as-
tronomers. In addition, there are several avenues of future development to ex-
plore. Firstly, support for more input formats (specifically the VOTable format)
and data sources (RDBMSes other than Informix) is desirable. Secondly, perfor-
mance could be improved by generating I/O code and data structures specific
to a desired catalog column set at compile-time (or even run-time). Thirdly,
allowing the use of SQL expressions to filter sources and matches (or to gener-
ate new column values) would allow astronomers unfamiliar with C++ to make
wider and more efficient use of the software. Finally, including a module capable
of determining whether or not the neighborhood of a source from one mission
has been observed by another would be invaluable when processing primary and
secondary no-match lists. Software availability is expected in early 2004.

*http://us-vo.org

*http://irsa.ipac.caltech.edu/applications/WebCompare/nvodemo/

