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Abstract. We employ Bayesian inference for the joint estimation of
sources and background on ROSAT All-Sky Survey (RASS) data. The
probabilistic method allows for detection improvement of faint extended
celestial sources compared to the Standard Analysis Software System
(SASS). Background maps were estimated in a single step together with
the detection of sources without pixel censoring. Consistent uncertain-
ties of background and sources are provided. The source probability is
evaluated for single pixels as well as for pixel domains to enhance source
detection of weak and extended sources.

1. Introduction

The RASS x-ray data were largely analyzed with the Standard Analysis Soft-
ware System (SASS). The results can be found in the Bright and Faint Source
catalogues (Voges et al. 1999, 2000). Nevertheless, SASS is known for lack of
sensitivity for faint or extended sources. This is due to the sliding window tech-
nique which locally searches for count enhancements relative to the intensity in
a surrounding area defining the background intensity. In multiple steps the win-
dow width is changed to allow for the detection of extended sources. But faint
extended sources and blended faint sources in crowded fields may get lost. One
reason is due to the local estimation of the background in a small region around
the sliding window which may provide only poor signal-to-noise ratios (S/N).
The sources are characterized by fitting the candidate sources in a further step
using a Maximum-Likelihood (ML) method (Boese & Doebereiner 2001). The
ML method works properly on prominent point-like sources which account for
94% of the sources published in the RASS Bright Source catalogue. The char-
acteristics of the faint sources may not be properly estimated in case of faint
extended sources (Voges et al. 1999).

The present method using Bayesian Probability Theory (BPT) estimates
the background and sources in a single step neither employing pixel censoring
nor using a sliding window technique. The aim is to infer simultaneously a back-
ground map for the complete field size (6.4◦×6.4◦ in the sky) and a probability
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for having source intensity in addition to the background intensity in a pixel
cell or pixel domain. Bayesian inference allows reasoning on the basis of sparse
data employing additional information independent of the data. The results
are given by probability distributions quantifying our state of knowledge. For
background estimation and source detection the additional information is the as-
sumption that the background is smooth, e.g. spatially slowly varying compared
to source dimensions. To allow for smoothness the background is modelled with
a bivariate Thin-Plate spline. The coexistence of background and sources is
described with a probabilistic two-component mixture model where one compo-
nent describes background contribution only and the other component describes
background plus signal contributions. Each pixel cell (or pixel domain) is char-
acterized by the probability of belonging to one of the two mixture components.
For the background spline estimation the photons contained in all pixel cells are
considered including pixels containing additional source contributions.

This technique is applied on a data sample coming from the ROSAT PSPC
in Survey Mode (0.1-2.4 keV). The ROSAT exposure map and the observatory’s
point spread function have been properly accounted for.

2. Method

Given the observed data set D = {dij} ∈ N0, where dij expresses photon counts
in a pixel cell ij, two complementary hypotheses arise:

{
Bij → dij = bij + εij

Bij → dij = bij + sij + εij

Hypothesis Bij specifies that dij consists only of background bij spoiled with
noise εij . Hypothesis Bij specifies the case where additional source intensity sij

contributes to the background.
Additional assumptions are that no negative values for signal and back-

ground amplitudes are allowed and that the background is smoother than the
signal. This is achieved by modelling the background count rate with a bivariate
Thin-Plate spline where the supporting points are chosen sparsely to ensure that
sources can not be fitted. The spline fits the background component whereas
count enhancements classify pixel (domains) with source contributions.

The likelihood distributions for the two hypotheses are

p(dij | Bij, bij) =
b
dij

ij

dij!
e−bij , (1)

p(dij | Bij, bij, sij) =
(bij + sij)dij

dij!
e−(bij+sij ). (2)

For background estimation we have to marginalize over the signal in eqn. 2
according to the sum rule of BPT. The prior distribution over the signal is
chosen to be exponential, p(sij | λ) = exp{−sij

λ }/λ, assuming we know only
the average value of the signal intensity λ. The prior probability for the two
hypotheses is chosen uninformative to be p(Bij) = p(Bij) = β = 0.5.
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Because we do not know if a certain pixel contains purely background or
additional signal, the likelihood for the mixture model is

p(D | b, λ) =
∏
ij

[β · p(dij | Bij, bij) + (1− β) · p(dij | Bij , bij, λ)] (3)

where

p(dij | Bij, bij, λ) =
e

bij
λ

λ(1 + 1
λ)

dij+1
· Γ[(dij + 1), bij(1 + 1

λ)]
Γ(dij + 1)

is the Poisson distribution marginalized over sij. The prior probability density
function for bij is chosen flat for positive values and 0 elsewhere. The poste-
rior distribution is according to Bayes theorem proportional to the product of
the mixture likelihood and the prior. Its maximum with respect to b gives an
estimate of the background map which includes the observatory’s exposure map.

The probability of having source contribution in pixel cells or domains is

p(Bij | dij, bij, λ) =
p(Bij) · p(dij | Bij, bij, λ)

p(Bij) · p(dij | Bij, bij, λ) + p(Bij) · p(dij | Bij , bij)
. (4)

Details of mixture modelling in the framework of BPT can be found in von der
Linden et al. (1999) and Fischer et al. (2000). In order to include the width of the
instrumental PSF, a minimum of 3 by 3 pixels domain has to be considered. In
addition, we allow for larger correlation lengths to enhance weak and extended
source detection.

3. Results
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Figure 1. On the left, ROSAT field rs930625 at α = 17h49′5.47′′ δ =
+61◦52m30.0s. On the right, source probability evaluated accounting
for the width of the ROSAT PSPC PSF.

Fig. 1 left shows the ROSAT PSPC field RS930625 in the broad energy
band (E = 0.1−2.4 keV) located in the ecliptic polar region. The observatory’s
exposure time varies between 1693.1-13475.5 sec. The average photon counts per
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Figure 2. Background map extracted from rs930625 with a Thin-
Plate spline combined with the observatory’s exposure map.

pixel is 2.9. The right figure shows the probability for having source contribution
in 3 by 3 pixel domains. The corresponding background map is shown in Fig. 2.
The background intensity varies between 9.37±0.02 and 1.153±0.006 expected
counts which shows the prominent variation due to the heterogeneous satellite
exposure time.

4. Conclusions and Further Prospects

BPT allows to estimate background maps and to detect sources in a single
step providing consistent uncertainties of background and sources. The source
probability is evaluated for single pixels as well as for pixel domains to enhance
source detection for weak and extended sources. The detection sensitivity is
enhanced compared to SASS results because the full field of view is exploited for
background estimation. An extensive comparison with SASS results is beyond
the scope of the present paper and will be addressed in a forthcoming paper.
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