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Abstract. Many fundamental statistical methods have become critical
tools for scientific data analysis yet do not scale tractably to modern
large datasets. This paper will describe very recent algorithms based on
computational geometry which have dramatically reduced the computa-
tional complexity of 1) kernel density estimation (which also extends to
nonparametric regression, classification, and clustering), and 2) the n-
point correlation function for arbitrary n. These new multi-tree methods
typically yield orders of magnitude in speedup over the previous state of
the art for similar accuracy, making millions of data points tractable on
desktop workstations for the first time.

1. Statistics on Very Large Datasets

Statistical inference methods are a basic component of astronomical research.
Nonparametric methods, in particular, make as few assumptions as possible
about the data’s underlying distribution, and are thus of particular relevance
to scientific discovery in astronomy. Unfortunately these tend to be much more
computationally intensive than parametric procedures. In the era of massive
and ever-growing astronomical databases, such as the SDSS and several others,
astronomical data analysis would seem to have already surpassed the tractable
regime of nonparametric methods, which is roughly in the tens of thousands of
data points on modern desktop workstations. In this paper we summarize recent
work in computer science, in collaboration with astronomers and statisticians
(PiCA Group, www.picagroup.org) which has significantly extended the ability
of astronomers to perform nonparametric statistical calculations with perfect or
high accuracy on datasets of millions of points and beyond.
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Figure 1.  An mrkd-tree. (a) Nodes at level 3. (b) Nodes at level 5. The
dots are the individual data points. The sizes and positions of the disks show the

node counts and centroids. The ellipses and rectangles show the covariances and
bounding boxes. (c¢) The rectangles show the nodes pruned during a range search for
one (depicted) query and radius. (d) More pruning is possible using range-counting
instead of range-searching.

2. Adaptive kd-tree Structures

A kd-tree records a d-dimensional data set containing N records. Fach node
represents a set of data points by their bounding box. Non-leaf nodes have two
children, obtained by splitting the widest dimension of the parent’s bounding
box. This crucial aspect of the construction procedure makes this data struc-
ture adaptive to the data distribution, unlike fixed grids or other simpler tree
structures. For the purposes of this paper, nodes are split until they contain
only one point, where they become leaves. An mrkd-tree is a conventional kd-
tree decorated, at each node, with extra statistics about the node’s data, such
as their count, centroid, and covariance. They are an instance of the idea of
‘cached sufficient statistics’ and are quite efficient in practice. mrkd-trees can
be built quickly, in time O(dN logd + d?N), where d is the dimensionality.

Figure 1 shows an mrkd-tree as well as simple examples of two mechanisms
which can be used to reduce computation. Two basic prototype problems in
computational geometry are that of range-searching, or finding all points within
radius 7 of a query point z,, and range-counting, in which the task is to simply
return the number of such points. By using the bounding boxes of subsets of
the dataset associated with nodes in the tree, we can exclude all of these subsets
from further exploration, i.e. recursive traversal down the appropriate subtrees.
This is called exclusion pruning. In range-counting, we can additionally perform
inclusion pruning, since we have stored the node counts as sufficient statistics.
More complex forms of pruning are necessary for other problems.

3. Multi-Tree Methods

Algorithms performing operations in a manner similar to that described above
have existed in computational geometry for some time. Problems such as com-
puting kernel density estimates and n-point correlation functions correspond to
summations over pairs, triples, or in general n-tuples of points. We have devel-
oped a class of algorithms which dramatically reduce the algorithmic complexity
for such problems: it is the extension of the previous single-tree methods to a
new class we call multi-tree methods (Gray, 2003). The first necessary element
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is the extension of the previous point-node pruning mechanisms to analogous
node-node pruning mechanisms. This can be seen as a special case of extending
the general algorithmic device of divide-and-conquer over a set to higher-order
divide-and-conquer over multiple sets.

4. Kernel Density Estimation

We first consider the method of kernel density estimation (KDE) (Silverman
1986), a very widely analyzed and applied class of nonparametric density estima-
tion techniques. Analogous kernel estimators exist for nonparametric regression,
and KDE can be used as a subroutine to construct nonparametric classification
procedures and clustering procedures. The task we consider in this paper is that
of computing the density estimate ]ﬁ(gq) for each point z, in a query dataset con-
taining No points, given a reference dataset containing Nz points and a local
kernel function K (-) centered upon each reference datum and having scale pa-
rameter h (the 'bandwidth’), or K,(-). The density estimate at the ¢** query

point z, is
~ 1 M= 1 ||£q - Er”
)=~ —K|—F— (1)
Ng = Van h

where d is the dimensionality of the data and Vg, = [0 Kj(z)dz, a normalizing
constant depending on d and h.

Note that two typical forms for the kernel function K (-) are the spherical
kernel (Kj(||lz, — z,|) = 1 if ||z, — 2, || < h, otherwise 0, with normalizing
constant V3, , the volume of the sphere of radius & in D dimensions) and the
Gaussian kernel. The spherical kernel corresponds exactly to the range-counting
problem as described earlier, but because the Gaussian function does not have
finite extent, our previous notion of pruning must be extended to one of approz-
imation, which will not be described here for lack of space.

5. n-point Correlation Functions

Point processes are stochastic processes whose realizations consist of point events
in space (or time, the one-dimensional case). The Poisson process is the most
basic and important point process model. Poisson statistics thus form the foun-
dation of spatial statistics and have long formed a critical tool in astrophysics
(Peebles 1980). The n-point correlation function (npcf) corresponds to the n”
moment of Poisson counts. For example the joint probability of finding points
in each of the three volume elements dV,, dV;. and dVj is given by

dP = N}dV,dV,dVy[1 + &(8gr) + £(6rs) + £(0sq) + C(Ogrs Ors, Osq))] (2)

where d4., 0,5, and dg4 are the sides of the triangle defined by the three points
Zg, T, and zg. () is called the reduced 3-point correlation function. In general
we refer to this quantity in place of the full correlation function since it is what
we need to concern ourselves with computationally.

Computation of the npcf can be viewed as a form of range-counting problem:

however here the problem is that of counting the number of n-tuples whose
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Figure 2.  Examples of experimental runtimes. (a) This shows the advantage
of dual-tree KDE over a single-tree implementation, on an SDSS sample in 2 di-
mensions (RA and Dec). Note the linear growth in runtime for dual-tree KDE.
Performed on a 1999-era Pentium Linux workstation. Relative approximation error
is less than 107°. (b) Runtime for the 3-point correlation, on a mock galaxy cata-
log based upon a Virgo Lambda CDM simulation in 3 dimensions. Note that the
computation is exact, not approximate. Performed on a 2002-era Linux Pentium.

pairwise distances match a user-specified template for the permissible ranges.
The additional challenges posed by this generalization from pairs (as in KDE)
to n-tuples for arbitrary n include the definition of an appropriate recursion
strategy and allowance of all possible permutations of the template n-gon. These
additional complexities will not be described here for lack of space.

6. Conclusion

Figure 2 shows some typical examples of experimental performance, ranging up
to 1 million points. Further details, including mathematical runtime analyses,
can be found in (Gray & Moore 2003, Moore et al. 2001) and journal papers
to appear. We anticipate that these algorithms will open the door to significant
astronomical analyses which could not have been suggested previously.
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