Astronomical Data Analysis Software and Systems XIIT
ASP Conference Series, Vol. 314, 2004
F. Ochsenbein, M. Allen, and D. Egret, eds.

Promises and Challenges in Automatic Pattern
Recognition

Tin Kam Ho

Bell Laboratories, Lucent Technologies

Abstract. Pattern recognition is to identify and model regularities in
empirical data by algorithmic processes. Successful application of the es-
tablished methods requires good understanding of their behavior and how
well they match a particular context. Difficulties can arise from either
the intrinsic complexity of a problem or a mismatch of methods to prob-
lems. We describe our efforts in characterizing the intrinsic complexity
of a classification problem and its relationship to classifier performance.
We discuss how Mirage, an exploratory data analysis tool, is designed to
help integrate domain expertise into the process of solution development.

1. Introduction

Many large-scale sky surveys in progress or in planning are expected to generate
data at a rate far beyond reach by traditional manual analysis. Inevitably some
form of automatic analysis must be employed at a certain stage of the data
processing pipeline. Ideally, automatic analysis should go beyond routine data
reduction operations, and play an active role in assisting and accelerating the
process of knowledge discovery.

Here astronomy shares similar concerns with many other areas of study, like
weather forecasting, earth observation, robotic perception, medical diagnosis,
security monitoring, web-based information retrieval, and financial engineering.
There are similar needs for processing numbers, time series, images, sound, and
spectral observations to extract useful information and detect new events. One
may even argue that, the ability to recognize patterns from observations is at
the heart of human intelligence. Besides these explicit applications, many of our
daily activities like physical navigation, social interactions, and decision making,
all depend critically on this ability.

Algorithmic methods for discovering regularities and irregularities in data
sets have been under active research over the entire history of development in
computing machinery. In some application domains there have been good pro-
gresses resulting in successful algorithms in routine use, such as in postal address
reading machines for high-speed, large-volume mail sorting. But obviously we
are still far from solving all potential application problems. In this article we
review what have been accomplished in the methodology, and what challenges
are ahead.

239
(© Copyright 2004 Astronomical Society of the Pacific. All rights reserved.

240 Ho

2. Essential Tasks and Methods in Automatic Pattern Recognition

The process of automatic pattern recognition involves several key tasks: choice
of a good feature representation, design of procedures for feature extraction,
selection of relevant features for classification, and from there it can go into
supervised or unsupervised learning (Jain et al. 2000).

In supervised learning (discrimination), we use a labeled training set to tune
a chosen classifier so that it can assign an unseen sample to one of the several pre-
defined classes exemplified in the training set. This involves choosing a classifier
(an algorithm among several known families), training the classifier (developing
the necessary data structures or tuning the critical parameters), and evaluating
the classifier to set expectation on its accuracy before the actual application.
Success of the process is measured by the accuracy in class assignment on a new
data set.

In unsupervised learning (clustering), there are no pre-defined classes. We
need to choose and tune an algorithm to find clusters that are subsets of data
sharing some common properties. This involves choosing and tuning a clustering
algorithm, and evaluating the results within the application context. Good
results are those satisfying a specific validation criterion associated with the
algorithm, or those with useful interpretations in the context of the domain
knowledge.

Feature Extraction and Representation

Feature extraction is the process of obtaining measurements of the objects. The
measurements can come directly from sensor output, or can be reduced and re-
fined by domain-specific algorithms or generic tools like Gabor analysis, Fourier
analysis, wavelet analysis, or principle component analysis. Features need to be
informative of the task at hand. This is where domain expertise can do most
help: which shape features are the most critical descriptors of galaxy morphol-
ogy? should a set of light curve be normalized by maximum intensity or by
duration per cycle? is an object’s position important for identification of its
type? which coordinate system is the most appropriate for this task? A good
set of features have strong impact on the success of the subsequent recognition
process.

In representing the features there are several choices: (1) fixed length nu-
merical vectors; (2) symbol strings; (3) graphs and other data structures. There
is a depository of recognition methods matching each feature representation. In
addition, there are rule-based classifier systems that can handle different kinds
of feature representations. The rules can be hand-designed, deduced by formal
logic, or selected by genetic algorithms.

Classifiers and Clustering Algorithms

Symbol strings are typically processed by syntactic pattern recognition methods.
These methods represent each class by a grammar consisting of a set of allowed
symbols and production rules. The classifier is a parser that tries to reduce
the input string to the most likely generating symbol according to the produc-
tion rules. Syntactic methods are best suited to problems with clear primitives
and stable intermediate structures, with well defined and known alternatives.

Promises and Challenges in Automatic Pattern Recognition 241

Domain knowledge can be explicitly encoded into the grammar (Trahanias &
Skordalakis 1990). However, if good knowledge about the problem’s structure is
not available, automatically inferring the grammar from a sample set is a very
difficult task.

Features represented by graphs are processed by structural methods like
graph matching for isomorphisms, elastic matching, and subtree matching. Both
the data structure and the matching procedure can encode knowledge about the
problem. Careful heuristic designs are needed in most applications. Difficulties
include how to build noise tolerance into the matching algorithms, and how to
deal with the combinatorial complexity.

Fixed length numerical vectors are the most commonly used feature rep-
resentations. Feature vectors are processed by statistical pattern recognition
methods. Table 1 lists several major families of classification methods in this
category. Statistical pattern recognition methods do not rely on explicit encod-
ing of domain knowledge. The classifier training procedures include mechanisms
for inferring the distribution of each class in the feature space. This makes them
widely applicable, and they are by far the richest and the most successful cat-
egory of methods in practice. However, even with a wide range of choices in
classifier algorithms, there is no guarantee of success for any particular appli-
cation. Often the difficulty is in finding the right method best suited for the
problem at hand (Figure 1).

(a) (b) (c)

Figure 1. Class boundary according to different classifiers: (a) an
example two-class, two-dimensional problem; class boundary accord-
ing to (b) XCS classifier (a genetic algorithm), (c) nearest-neighbor
classifier, and (d) a linear classifier.

For unsupervised learning there are also a large collection of algorithms,
including parametric methods like mixture estimation (most commonly Gaus-
sian mixtures), and nonparametric methods like the k-means algorithm, mode
seeking procedures (finding density peaks or valleys), self-organizing maps (a
neural network), graph based methods (minimal spanning tree), and hierarchi-
cal methods. Many of these methods have found good uses in some problems.
However, like in supervised learning, matching the methods to problems still
presents major difficulty, since each method has certain implicit assumptions
about the data distributions. Coupled with the lack of an absolute notion of
correctness, success in unsupervised learning is often difficult to determine.

The uncertainty in matches between methods and problems reduces the ap-
plication of learning algorithms to a lengthy trial-and-error process, which is far
from desirable for processing large surveys where many potential questions can

242 Ho

method principle variants
(1) parametric procedures: estimates of probabil-
estimate the class- | ity distributions are based on an assumed func-
conditional distribution | tional form (e.g. Ga}lssian); (2) nonparametric
Bayesian using the training samples; procedures: no functlonal.f.orm Qf the c.hstrlbu—
classifiers assign an unknown sample tions is assumed; the empirical distributions are
to the class with maximum | described using generic estimators (e.g. based

a posteriori probability on kernels) or low-order approximations based on

weak assumptions such as continuity and smooth-
ness

(I) many variations in the procedure of infer-
ring the hyperplane: Fisher’s discriminant anal-

. ysis, equi-distance divider between class means

1nfer. a hyperplane best sep- (nearest mean classifier), minimizing sum of er-

. arating two classes (or e*%Ch ror distances, maximizing margins, or by iterative
h.near clas- | class from the rest); assign weight adjustments minimizing errors. (2) by ap-
sifiers an unknown sample to the plying nonlinear transformations on the original

S}de of the hYPerPIane be- features, the problem can be embedded in a new

lieved to contain its class space where a linear classifier can describe a non-

linear boundary in the original space (as in sup-
port vector machines)

assign an unknown sam- (D) variations by the distance metric; (2) K-
nearest ple to the class represented nearest neighbors: take votes from the classes of
neighbor by training samples in its several nearest neighbors; (3) reduced, condensed
classifiers vicinity classifiers where only a subset of the training sam-

ples are used, mostly for efficiency concern
construct a tree represent-

ing a hierarchical partition- | (1) variations by the type of split at each inter-

ing of the feature space into | nal node; (2) variations by the algorithm for tree

.. leaves where a single class | construction: how features and their weights are
decision & dominates; propagate an | chosen at each split, when to stop growing the
Egi(j:ts unknown sample down the | tree, whether the tree is pruned back for better
tree to a particular leave | generalization power; (3) decision forests: voting
node and assign it to the | by an ensemble of decision trees, each tree differ-
class with maximum prob- | ing in training samples or subsets of features used

ability at the leave node

design and weigh connec-

tions between groups of

source, target, and inter- | (1) architectural variations: multi-layer percep-

mediate nodes representing | trons, radial basis networks, Hopfield nets, learn-
neural net- hidden structures; propa- | ing vector quantization; (2) differences in several

K gate an unknown sample | aspects of the training procedure: target func-
works through the network un- | tion for optimization, algorithm for weight ad-
til it reaches the target | justment, validation procedure for termination of

group, threshold or take | training, and network size control

maximum of accumulated

scores to decide on itg class

train a committee of clas-

:igﬁrisg%)eigﬁ?ozlﬁl:-dfzzz (1) variations in the ensemble size and the mixture
ensemble an unknown sample to7 cach of classifier types; (2) differences in the procedures
methods component classifier and for constructing and optimizing the ensemble (3)

combine their decisions on variations in the decision combination rules

its class

Table 1. Common methods for supervised classification.

Promises and Challenges in Automatic Pattern Recognition 243

be formulated on the combinatorial interactions of many parameters. The un-
certainty is rooted in a lack of understanding on how data distributions interact
with classifier geometry and the sampling processes. We believe that the key
to improve upon the current level of automation in pattern learning is a better
understanding of data set complexity in high-dimensional spaces, especially, the
geometry of data distributions and its detailed relationship to classifier behavior.
In the next section we describe some of our recent studies along these lines.

3. Characterization of Data Complexity by Geometrical Measures

Given an arbitrary discrimination problem, how do we know whether it is in-
trinsically solvable by the automatic methods? Given an arbitrary clustering
problem, how do we know whether there are indeed distinct clusters and which
algorithm has the best chance of finding them? If we do not expect distinct
classes, how do we recognize other types of regularities, such as a trend in
evolution, a specific trajectory in a state space, a compact, low-dimensional dis-
tribution in a high-dimensional feature space? How can we find out about any
irregularities that may indicate new facts? How do we do all these if the patterns
may be buried among irrelevant data and measurements?

To answer many of these questions it requires a detailed understanding of
how the data are distributed in the feature space. A pattern is formed if there are
data points sharing certain similar attributes. In geometrical terms it means that
these points are close to each other along some spatial dimensions. Classification
is possible when the points considered to be in the same class are located in
compact (dense) groups within geometrical regions with simple shapes, so that
the gaps left between can accommodate a simple decision boundary. Such a
geometrical perspective is especially helpful if we consider that most classifiers
can also be described by simple geometrical primitives, such as hyperplanes in
linear classifiers, Voronoi regions in nearest neighbor classifiers, or piecewise
linear surfaces in decision trees.

In a recent study (Ho & Basu 2002) with several measures of the geometri-
cal complexity of data sets (Figure 2), we find that a collection of classification
problems arising from real-world applications can span a large range in the val-
ues of these measures. These problems present different degrees of difficulty
to different kinds of classifiers. An analysis of the complexity of the problems
for which different classifiers perform the best reveals that classifiers have dis-
tinct domains of competence in the space of the complexity measures (Ho 2002,
PAA). We expect that more complete and systematic studies of this kind will
enable automatic matching of problems to classifiers with good confidence. The
complexity measures can also be used to guide the formulation of a classifica-
tion problem, including definition of the classes, selection of most discriminatory
features, and construction of useful feature transformations.

The complexity of a class boundary may interact with other factors that also
affect a problem’s difficulty. These include the intrinsic ambiguity of classes, due
to poor class definitions or poor feature choices (Figure 3), and sample sparsity.
Real applications often contain a mixture of these difficulties (Figure 4).

When there is a prior expectation that the data may form several coherent
groups, clustering methods can help discover such structures. However, many

244 Ho

R

o

o—0_

(b) ()

Figure 2. Different ways for describing the complexity of a classifica-
tion boundary: (a) measure of separability of the convex hulls enclosing
two classes by a particular linear surface; (b) a count of class-crossing
edges in a minimum spanning tree connecting all the points; (c) a count
of maximal balls needed to cover all points in each class.

o3

‘ﬁ"% F: _x“-iF
‘tiﬁ f* -

et o)

Figure 3. Class ambiguity due to different reasons. (Left) instrinsic
shape ambiguity: lower-case letter “el” and numeral “one” appear in
the same shape in many fonts; the identity can only be determined
from context. (Right) non-informative features: there may be suffi-
cient features to classify the shells by shape, but not by the time they
were collected or by which hand they were collected. More informative
features are needed.

clustering algorithms have strong biases on the types of structures to look for, to
the extent that they may coerce the data into undesirable groupings that do not
necessarily have clear physical interpretation. One way to guard against such
algorithmic artifacts is to first establish the existence of any clustering tendency
by statistical testing of a uniformity hypothesis. Similar tests are needed for
evidences of more sophisticated structures.

Sometimes the main concern in data analysis is not necessarily to divide
the data into disjoint classes, but rather, to explore if there exist any outliers, or
whether variations in the data can be described by a trend with a small number
of parameters. Methods for estimating the intrinsic dimensionality (Verveer
& Duin 1995) attempt to determine how many fundamental parameters there
are that determine the variations in the data. This can assist the choice of a
low-dimensional smooth surface for modeling the data, and outliers can then
be detected by assessing their match to the model. Many of these algorithms
have difficulty scaling up to high dimensionality, and they are still under active
research.

Promises and Challenges in Automatic Pattern Recognition 245

Figure 4. Complex class geometry and sparse sample cause ill-
defined boundary. More training samples are needed.

A challenge ahead is to establish better connections among the various
methods for characterizing data geometry, and connections between data geom-
etry and classifier/model geometry. This can help reveal the limitations of the
current methods and suggest how they can be overcome. The goal for research
in this area is to develop a rich language for geometrical reasoning about point
sets in high-dimensional spaces. We expect this to draw input from progresses
in differential geometry and its variants incorporating stochastic and discrete
processes.

4. Exploratory Visualization of Structures in Data Sets

Given many open challenges in fully automating the pattern discovery process,
a strategy with well-proven value is to encourage continuous interaction between
domain experts and developers of pattern recognition algorithms.

Domain expertise can bring insights into many stages of solution develop-
ment. An example is, in classifying galaxies by morphology, how should one
apply suitable normalization to the shape measurements to account for varia-
tions in the orientation of the rotational axis? Also, for validating discrimination
between stars and galaxies, what is the expected luminosity function of each cat-
egory? In examining patterns in a set of light curves, is the maximum intensity
a critical feature to consider? Or should the time series be normalized by the
length of each cycle? If a spectral shape can be described by several key pa-
rameters, can we see their correlations with other known effects, such as the
temperature and kinematic estimates?

A good way to enable the scientists to participate in the process of algorithm
development is through the use of an interactive data visualization tool. Ideally,
the tool can display data and the results of automatic analysis simultaneously
in many different views to support explorations of a wide range of possibilities.
This can bring input into many stages of solution development, such as:

e sanitary checking in data preparation: verify correctness of data reduc-
tion steps, clean up undesirable artifacts, and select most relevant sets of
samples;

e initial exploration: spot explicit patterns, select potentially useful features,
try different normalization schemes, suggest choices of classifiers, clustering
algorithms, or trend models;

246 Ho

C/

Figure 5. If data projected to two spaces form different cluster struc-
tures, questions arise on how the structures correlate with each other.
Say, will a walk following a principal curve in one space correspond
to a uni-directional walk in another space? Suppose the structure on
the left represents groups of objects by color, and the one on the right
represents groups by size. We may ask, do objects with the same color
always have the same size? When the object sizes increase monotoni-
cally, how do their colors change?

e tentative modeling: examine assigned classes, detected structures, or iden-
tified outliers, compare results of alternative methods, fine-tune class def-
initions and algorithm parameters;

e interpretation: validate classification, interpret detected structures and
trends, correlate results with known facts.

Mirage

The Mirage tool (Ho 2003, ADASS) is designed to address these concerns and
needs. Mirage is a software experiment on the displays and operations that are
most suited to enable pattern discovery from data in multiple types such as
numerical vectors, time series, images, and spectra. Many queries about object
properties and the relationship between different objects can be translated into
geometrical queries on proximity structures in different subspaces (Figure 5),
which can be investigated graphically in Mirage. The features we experiment
with include the followings.

Simultaneous, multiple views in a flexible layout. For the primary goal of vi-
sualizing data geometry, several types of displays are provided, including basic
tools in statistical graphics like histograms, scatter plots, and parallel coordinate
plots. The displays are organized as a set of pages; each page can be arbitrarily
tiled and any display can go into any tile by drag-and-drop (Figure 6). Displays
for special data types, such as images in FITS format, can be plugged in via a
standard interface (Carliles et al. 2004).

Core exploration commands and display-specific manipulations. A set of core
commands are implemented by each display module. These are for broadcasting
the local selection of a set of data points, highlighting or coloring a broadcast
selection, deleting the selection, canceling the highlights or colors, and for switch-
ing between monochrome and coloring display modes. In addition, each module
can provide local operations suitable for the specific data type, such as manip-
ulation of image color maps, changing resolution of histograms, and zooming in
and out of a specific display focus. The selection broadcasting mechanism is very
effective for tracking correlations. Items of interest found from one view of the
data set can be easily traced in other views. Coordinated sequences of selection

Promises and Challenges in Automatic Pattern Recognition 247

E I P i Aa
1‘"
.
B
t &=
. . £
2 5 5
ee] v, T
7 v v
W & 5
AR O o P

s

e i S
e e i R T e ey ==y [e §CRAUEL

Figure 6. Screenshots from Mirage: multiple views of the same data
set can be opened in an arbitrary layout. Selection from one display
can be tracked in other displays. (Left) a table view, two scatter plots,
and a time series display in parallel coordinates; (Right) an array of
histograms each on a different attribute.

and broadcasting can be used to track the effects of systematic changes in data
attributes. An example is a step-by-step broadcasting of a standard traversal
of a cluster tree, or a walk on each bin of a histogram. When other displays
highlight the corresponding data items, one can easily find out if the items are
also similar in terms of other attributes.

Facilities for examining tentative modeling. A tentative classification can be
represented as one column in the data matrix, and displayed as one attribute.
Selection in that display can be broadcasted to other displays where the effects
of the classification can be examined. This way one can easily compare alter-
native classifications to refine the problem formulation, select features for the
classifier, and polish the classifier design. Moreover, data can be imported on
the fly by adding columns and rows to the data matrix. Columns added can
show newly observed or computed attributes, including classification decisions
or predictions from external algorithms. Rows added can be additional samples
from the same source, which can be used to check the correctness of a com-
puted model. Continuous adding and removing rows can turn the software into
a monitoring tool.

Ezxtensible software design. The software is designed to be extensible in differ-
ent ways. Specialized displays can be added as plug-in’s. Exploratory actions
are organized around a small command interpreter, which can be activated via
an application interface. In addition, the software has a slot for plugging in an
“Action” panel, which can be used to encapsulate data updating and analysis
operations useful for the current task. The Mirage window can also be embedded
into and invoked by wrapper programs which can implement more sophisticated
data access methods (Carliles et al. 2004).

Scripting for repeatable, cooperative investigation. Data analysis is seldom an
individual effort. To enable easy repetition and sharing of exploration com-

248 Ho

mands and results in a research team, Mirage provides text-driven commands
and scripting facilities. Scripts can be passed around for replay. They can also
be systematically constructed by simple programs to make animations.

Early applications of Mirage confirmed the effectiveness of many of these
designs, and suggested improvements in several ways. Programmable display
layouts, software state saving and restoration, and automated explorations are
among the most desired. We are also investigating better ways to cooperate with
external analysis code while maintaining a simple and modular core architecture.

5. Conclusions

Research in automatic pattern recognition has resulted in the identification of
several key tasks and the development of a large collection of methods. Yet
we are still missing systematic procedures for matching methods to problems,
largely because of a lack of effective ways for characterizing data complexity.
Early investigations reveal the multi-facet nature of data complexity and its
relationship to classifier performance. A better understanding of the data ge-
ometry in high-dimensional spaces is needed.

Convenient visualization tools can provide better insight into the data ge-
ometry, and to provide domain experts easy access to the analysis process. They
can closely monitor each stage of solution development, and offer frequent feed-
back in key steps like feature selection, evaluation of tentative classifications,
and validation of final results. The Mirage software is designed to enable such
exchanges. It is constructed as an extensible platform for supporting knowledge
discovery in various degrees of automation. We are in continuous experimenta-
tion on ways to improve it towards a rich tool for interactive pattern recognition.

Acknowledgments. I thank E.B. Mansilla for the classifier examples in
Figure 1, and many early users of Mirage for their encouragement and sugges-
tions.

References

Carliles, S., Ho, T.K., O’Mullane, W. 2004, this volume300.

Ho, T.K. 2002, Pattern Analysis & Applications, 5, 102-112.

Ho, T.K. 2003, in ASP Conf. Ser., Vol. 295, ADASS XII, ed. H. E. Payne, R. L.
Jedrzejewski, & R. N. Hook (San Francisco: ASP)339.

Ho, T.K., Basu, M. 2002, IEEE Trans. on Pattern Analysis & Machine Intelli-
gence, 24, 3, 289-300.

Jain, A.K., Duin, R.P.W., Mao, J. 2000, IEEE Trans. on Pattern Analysis &
Machine Intelligence, 22, 1, 4-37.

Trahanias, P., Skordalakis E. 1990, IEEE Trans. on Pattern Analysis & Machine
Intelligence, 12, 7, 648-657.

Verveer, P.J., Duin, R.P.W. 1995, IEEE Trans. on Pattern Analysis & Machine
Intelligence, 17, 1, 81-86.

