
Astronomical Data Analysis Software and Systems XII
ASP Conference Series, Vol. 295, 2003
H. E. Payne, R. I. Jedrzejewski, and R. N. Hook, eds.

Source Code Management and Software Distribution
using Open Source Technologies

Martin Bly

Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11
0QX, United Kingdom

Alasdair Allan
School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL,
United Kingdom

Tim Jenness
Joint Astronomy Centre, 660 N. A‘ohōkū Place, University Park, Hilo,
HI 96720

Abstract. The Starlink Software Collection (USSC) runs on three dif-
ferent platforms and contains approximately 130 separate software items,
totaling over 6 million lines of code. Distribution of such large soft-
ware systems and installation at multiple remote sites has always been
problematic due to the complex web of inter-dependencies such systems
invariably generate.

The rise of the Open Source movement has brought standard tools
into common use to cope with such large and complex tasks. The RedHat
Package Manager (RPM) software is one such which is available for many
platforms. We have shown it is possible to automate the distribution and
installation of the Starlink Software using RPM. We anticipate that this
will vastly simplify installation and package management for Systems Ad-
ministrators who must support the USSC in production data processing
environments.

1. Introduction

The Starlink Software Collection1 (Bly et al. 2003) is a large collection of software
packages comprising subroutine libraries, applications packages and utilities for
astronomical data reduction and analysis. The whole collection is governed by a
set of interdependencies which not only complicates the process of building the
software but also which packages depend on which others at runtime.

Each package has its own makefile which contains the rules defining how
and in what order the components should be built, and their dependencies on
other packages. However, none of the packages are able to trigger the building

1http://www.starlink.ac.uk/

373

c© Copyright 2003 Astronomical Society of the Pacific. All rights reserved.



374 Bly, Allan & Jenness

of another package — this is traditionally done by a master makefile which
builds the packages in the correct order.

The master makefile is maintained by the Software Manager but has two
disadvantages — it does not express the package dependencies at run-time, and
contains only a simple ordered-list of packages to build — making it difficult to
slot a new package into a suitable place in the build sequence. A new approach
to managing the build and installation dependencies was needed. We have in-
vestigated ‘wrapping’ the USSC using the RedHat Package Manager (RPM)
system (Bailey, 1997) and have shown it is possible to automate the building
and distribution and simplify the installation and maintenance of the USSC for
Systems Administrators and users.

2. Why Choose the RPM System

The RedHat Package Manager2 is becoming ubiquitous in the Linux world,
having been adopted by most of the major distributions. It is also supported
on may other Unix systems including those supported by Starlink. The RPM
system has several advantageous features:

Tracking mechanism – it keeps track of installed packages and package ver-
sion numbers, and all files associated with each package.

Dependency and dependents checking – RPM checks dependencies of the
packages it is processing and warns of conflicts and unfulfilled dependen-
cies, and checks for packages that are dependent on those being processed.

Query capabilities – it has a full suite of query capabilities that provide in-
formation about the package, its dependencies and status.

Relocation – RPM can install packages in locations other than the one they
were intended to go (provided the set is re-locatable).

Adaptability – the RPM system works with existing build systems, and can
easily be used to provide a wrapping for existing package build systems,
from the simple to the most complex of systems.

Ease of use – installation of patches and updates can be automated.

Open-Source – the RPM package is open-source and runs on many operating
systems.

3. Wrapping the Starlink Packages

Each Starlink package has its own makefile and documents which conform to
a standard template, although the makefile and documents may have slight
variations from the standard. This makes them suitable for processing to provide
RPM with the information it requires.

2http://www.rpm.org/



Software Management using Open Source Technologies 375

[ast]
group=Starlink/Libraries
version=1.5.8
suns=sun210,sun211
requires=htx
buildrequires=sla,ems,chr,sae
fixup=STARBIN/ast_dev
summary=AST - A Library for Handling World Coordinate\
Systems in Astronomy
abstract=The AST library provides a comprehensive range\
of facilities for attaching world coordinate systems to\
astronomical data, for retrieving and interpreting that\
information and for generating graphical output based on it.

Figure 1. A typical depend.ini dependency file expressing build and
installation dependencies.

RPM requires a ‘spec’ file for a package, to define the various dependen-
cies. These can be generated by hand or automatically by processing a master
dependency list. A template dependency file depend.ini was created by hand
listing the software group, version, and list of SUNs (Starlink User Notes — the
documents) and then a Perl script is used to extract summary and abstract in-
formation from the package documents. The buildrequires and fixup lines are
then added by hand examination of the makefile to see which files are edited
and in what way at installation time. Buildrequires expresses the additional
packages required at build time and fixup expresses files that have to be changed
at installation.

A dependency file may contain details of more than one package — the
abstract extraction script getabst.pl processes all the package entries. Where
the document listed in the depend.ini file does not have the appropriate LATEX
keywords, the keys are left blank. Since this is demonstrating the concept, the
system depends on an existing Starlink installation with source files from which
it extracts its data.

Once a dependency file is ready, the RPM ‘spec’ file(s) can be generated.
This is the file that controls what RPM does when building and manipulating
the package. A Perl script mkspec.pl has been produced to interpret the de-
pendency file and generate ‘spec’ files based on a template for all packages listed
in the dependency file.

Existing Starlink installations do not have the source packaged in a sin-
gle tarball though the makefiles can provide them via the export source tar-
get which generates a compressed tarball of the appropriate files. The master
makefile can generate tarballs for all the packages.

The next step is to create a set of links for each package from an existing
USSC installation to the standard location for RPM build directories. A Perl
script mklinks.pl does this for all the packages in the dependency file, creating
links from /usr/src/redhat/SOURCES to the source files. Since the default



376 Bly, Allan & Jenness

location is /usr, one has to be root for this and the remaining steps. Once
the links are in place, the ‘spec’ files are copied to the /usr/src/redhat/SPECS
directory and the rpm program can take over to build the RPMs, both source
and installation sets.

4. Results

The resulting RPM files are re-locatable so you don’t have to install the packages
in the default location (/star). Using the --relocate command line switch one
can instead direct the package to any chosen path — since the normal location
is /star, one has to be careful where there is an existing (non-RPM) USSC
installation. Most packages are easily re-locatable and do not require special
tricks to be detailed in the depend.ini file. However, some packages do have
complex installation requirements and these need to be carefully expressed. The
whole collection can be processed to build RPM sets and installations made
based on them.

4.1. Problems

RPM itself requires access to the standard RPM database of dependencies
needed to track all the files. This is owned by root so general users cannot
create and install packages using the standard RPM distribution. At the time
this work was undertaken, the facilities in RPM to allow alternative databases
didn’t work, however a distribution that can use a database elsewhere should be
possible.

This work is proof of concept. The technology for extracting dependencies
and details from the existing build systems is rather basic, and some Starlink
packages are under regular development which tends to change the dependen-
cies. Stable packages such as libraries are easier to deal with. Nevertheless we
have demonstrated that RPM can be adapted to deal with an alien software
management system.

References

Bailey, E. 1997, “Maximum RPM”, Sams, ISBN: 0672311054
Bly, M. J., Giaretta, D. L., Taylor, M. B., & Currie, M. J. 2003, this volume,

445


