Solving for Polarization Leakage in Radio Interferometers Using Unpolarized Source

S. Bhatnagar,1 R. V. Urvashi2 and R. Nityananda3
National Center for Radio Astrophysics (NCRA), Pune, India 411007

Abstract. This paper presents an algorithm for solving antenna based polarization leakage in a radio interferometer using co-polar observations of unpolarized sources. If ignored, polarization leakage manifests itself as closure errors in parallel hand (co-polar) visibilities. Many working radio telescopes offer observational advantages for observations in non-polar mode (e.g., higher frequency resolution, lower integration time, etc.). Many observations are therefore done in non-polar mode and the computation of antenna based leakage gains in co-polar visibilities is scientifically useful for debugging and calibrating the instrument. Also, this is a useful option to use when one cannot or does not want to put in the additional measurement effort to determine the leakage term by means of cross-polar measurements. We also present results from test data taken with the Giant Meterwave Radio Telescope (GMRT) and discuss the degeneracy in the solutions and the equivalence of the leakage induced closure phase and the Pancharatnam phase of optics.

1. Introduction

Co-polar output of an interferometer, can be written as

\[\rho_{ij}^{pp} = \langle (g_i^p E_{i,o}^p + \alpha_i^q E_{i,o}^q + \epsilon_i)(g_j^p E_{j,o}^{p*} + \alpha_j^q E_{j,o}^{q*} + \epsilon_j)^* \rangle \]

where \(p \) and \(q \) are two orthogonal polarization states (R and L or X and Y), \(g_i^p \) the antenna complex gain for the \(p \)-channel of antenna \(i \), \(\alpha_i^q \) the leakage of \(q \)-signal into the \(p \)-channel, \(E_{i,o}^p \) the ideal response of the \(p \)-channel to the incident radiation, and \(\epsilon_i \) the antenna based additive noise. For an unpolarized point source, \(\langle E_{i,o}^p E_{j,o}^{p*} \rangle = \langle E_{i,o}^q E_{j,o}^{q*} \rangle = 0 \) and \(\langle E_{i,o}^p E_{j,o}^{q*} \rangle = \langle E_{i,o}^q E_{j,o}^p \rangle = \rho_{ij,oo}^{pp} = I/2 \) where \(I \) is the total intensity. Writing \(X_{ij}^{pp} = \rho_{ij}^{pp} / \rho_{ij,oo}^{pp} \) we get

\[X_{ij}^{pp} = g_i^p g_j^{p*} + \alpha_i^q \alpha_j^{q*} + \epsilon_{ij} \]

1Now at the National Radio Astronomy Observatory (NRAO), Socorro, NM 87801, Email: sbhatnag@aoc.nrao.edu
2Birla Institute of Technology & Science (BITS), Pilani, India and now the department of Computer Science and Engineering, UCSD, CA 92093. Email: uraovenk@cs.ucsd.edu
3Email: rajaram@ncra.tifr.res.in

© Copyright 2003 Astronomical Society of the Pacific. All rights reserved.
\(\epsilon_{ij} \) is the independent baseline based noise. Usually this represents the noise in \(\rho_{ij}^{pp} \) after the correlation operation plus the antenna based noise. \(\epsilon_{ij} \) therefore is a measure of the true closure errors in the system and is usually small. Assuming \(\alpha_i^q \)s to be negligible, the usual Selfcal algorithm estimates \(g_i^p \)s such that

\[
\sum_{i,j \neq j} |X_{ij}^{pp} - g_i^pg_j^p\alpha_i^q\alpha_j^q|^2
\]

is minimized. However, leakage due to mechanical and/or electronic imperfections in the feed, cross talk, squint of cross-polar primary beam, off-axis primary beam polarization, etc., is hard to eliminate making \(\alpha_i^q \)s potentially non-negligible.

In the presence of significant \(\alpha_i^q \)s (compared to \(\sqrt{\epsilon_{ij}} \)), ignoring the second term in Equation 2 will be equivalent to a system with apparent increased closure noise (\(\epsilon_{ij} + \alpha_i^q\alpha_j^q \) instead of just \(\epsilon_{ij} \)). Hence, polarization leakage manifests as increased closure errors. This has also been pointed out by Rogers (1983) in the context of VLBA observations, and extensive study by Massi & Aaron (1997) for EVN shows that imaging quality is limited by these errors.

2. Algorithm

When solving for only \(g_i^p \) using co-polar visibilities, the \(\alpha_i^q \)s appear as increased closure noise and will result in non-optimal solutions. Hence, a simultaneous solution for \(g_i^p \) and \(\alpha_i^q \) would be optimal. In the presence of significant polarization leakage, the correct estimator for the true closure noise is given by

\[
S = \sum_{i,j \neq j} |X_{ij}^{pp} - (g_i^pg_j^p + \alpha_i^q\alpha_j^q)|^2 w_{ij}^{pp}
\]

where \(w_{ij}^{pp} \) are the weights. Equating the partial derivatives \(\partial S/\partial g_i^*, \partial S/\partial \alpha_i^q \) to zero, we get a set of non-linear equations for \(g_i^p \)s and \(\alpha_i^q \)s which can be iteratively solved (Bhatnagar & Nityananda 2001).

3. Solution Degeneracy, Simulations and the GMRT Experiment

Simulations demonstrate that with the use of the above algorithm, the \(\chi^2 \) remains constant with increasing leakage, and that it solves for \(\alpha_i^q \)s only if they are significant (i.e., distinguishable from \(\sqrt{\epsilon_{ij}} \), Bhatnagar & Nityananda 2001). The decrease in \(\chi^2 \), compared to that given by Selfcal, is due to the use of the correct estimator for the closure noise and not because of extra free parameters (the \(\alpha_i^q \)s) in the problem. The solutions for \(\alpha_i^q \)s are therefore physically meaningful.

However, an obvious degeneracy is rotation of all the \(g \)’s by a common phase factor and the \(\alpha \)s by an, in general different, phase factor, does not affect the left hand side of Equation 2. We also have the freedom to choose a suitable basis in polarization space (see Bhatnagar & Nityananda 2001 for details). We choose this basis in such a way that the sum of the absolute squares of all the leakage terms is minimized. Carrying out the maximization of \(\sum |g_i|^2 \) by the method of Lagrange multipliers, subject to a constant \(\chi^2 \), we obtain the condition that \(\sum \alpha_i^q g_i = 0 \) (implying that the leakage coefficients be orthogonal to the gains) and can be incorporated by first choosing an overall phase for the \(\alpha \)’s so that \(\sum \alpha_i^q g_i \) is real. Then, carry out a rotation in the \(g - \alpha \) plane by an angle \(\theta \) satisfyingtan \(\theta = \sum \alpha_i^q g_i / (\sum g_i g_i^* - \alpha_i\alpha_i^*) \). Results of such a
transform on simulated data are shown in Figure 1. The absolute frame of reference in which \(\alpha_q^s \)s are measured, also remain undetermined since the source is unpolarized. However this degeneracy is same as that in the phase of \(g_q^s \) and is not important for correcting the data. We used GMRT L-band test data with circularly polarized feed on only one antenna (C03 in Figure 2) and linear feeds on the rest. In the mean linear basis of all the antennas, C03 appears as an antenna with \(\alpha_q^p = \alpha_q^l \sim 1 \) \((E_{C03}^X = E_{C03}^X e^{-i\delta} + E_{C03}^Y e^{i\delta}; \) ideally \(\delta = \pi/4 \)). The fractional leakage \(\alpha_q^p/g_q^p \) for all antennas is plotted in the complex plane in Figure 2[Left]. Mean leakage of all the antennas define the reference frame in which the leakage of the nominally linear antennas is minimum. All but one nominally linearly polarized antennas are at the origin (minimal leakage); points corresponding to C03 are farthest from the center, grouped \(\sim 180^\circ \) apart.

4. Poincaré Sphere and the Pancharatnam Phase

A general elliptically polarized state can be written as a superposition of two states represented by the vector \(\begin{bmatrix} \cos \theta/2 & \sin \theta/2 e^{i\phi} \end{bmatrix} \) in the basis defined by the left- and right-circular polarization states. Clearly, \(\theta = \pi/2 \) corresponds to linear polarization and \(\theta \neq 0, \pi/2 \) to elliptical polarization. The Poincaré sphere representation of the state of polarization maps the general elliptic state to the point \((\theta, \phi) \) on the sphere. It can be shown that the closure phase between three coherent, non-identical, antennas (points \(I,J \) and \(K \) in Figure 2[Right]) is equal to half the solid angle \(IJK \). This goes by the name Pancharatnam/Geometric/Berry’s phase in optical literature (Pancharatnam, 1956). The closure phase due to polarization mis-matches between phased antennas in a radio interferometer therefore naturally measures the Pancharatnam phase.
Figure 2. [Left] Plot of α_q^i/g_p^i for all GMRT antennas. C03LX and C03RX (open circles) are from correlations of R- and L-channel of C03 with X-channel of other linear antennas. Similarly for C03LY and C03RY (triangles). One of the linearly polarized antennas is leakier than the others and L-channel of C03 is noisier than its R-channel. [Right] Poincaré sphere representation of polarization states. Closure phase between three coherent but non-identical antennas represented by the points I, J and K is equal to half the solid angle of IJK.

5. Conclusions

The method described here measures the polarization leakage using the co-polar visibilities for an unpolarized calibrator. It is a useful tool for studying the polarization purity of the antennas of radio interferometers. Simultaneous solution of gain and leakage ensures that the method factorizes for leakage only if they are distinguishable from intrinsic true closure noise. The degeneracy between solutions of antenna based complex gains and leakage is broken by physically meaningful transform and the solutions can be used to remove leakage induced closure errors. Geometric interpretation of the results on the Poincaré sphere shows that the leakage induced closure phase is same as the Pancharatnam phase and the degeneracy in the solutions can be understood as a rigid rotation of the Poincaré sphere.

Acknowledgments. We thank the GMRT staff, NCRA, BITS and NRAO for their support and co-operation.

References

Rogers, A. E. E. 1983, VLB Array Memo No. 253